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A fundamental difficulty in artificial intelligence is that nobody really knows what intelli-
gence is, especially for systems with senses, environments, motivations and cognitive capacities
which are very different to our own. In our work we take a mainstream informal perspective on
intelligence and formalise and generalise this using the reinforcement learning framework and al-
gorithmic complexity theory. The resulting formal definition of intelligence has many interesting
properties and has received attention in both the academic [4, 5] and popular press [2, 1].

Although there is no strict consensus among experts over the definition of intelligence for hu-
mans, most definitions share many key features. In all cases, intelligence is a property of an entity,
which we will call the agent, that interacts with an external problem or situation, which we will
call the environment. An agent’s intelligence is typically related to its ability to succeed with re-
spect to one or more objectives, which we will call the goal. The emphasis on learning, adaptation
and flexibility common to many definitions implies that the environment is not fully known to the
agent. Thus true intelligence requires the ability to deal with a wide range of possibilities, not just a
few specific situations. Putting these things together gives us our informal definition: Intelligence
measures an agent’s general ability to achieve goals in a wide range of environments. We are
confident that this definition captures the essence of many common perspectives on intelligence.
It also describes what we would like to achieve in machines: A very general capacity to adapt and
perform well in a wide range of situations.

To formalise this we combine the extremely flexible reinforcement learning framework with
algorithmic complexity theory. In reinforcement learning the agent sends its actions to the envi-
ronment and receives observations and rewards back. The agent tries to maximise the amount of
reward it receives by learning about the structure of the environment and the goals it needs to ac-
complish in order to receive rewards. To denote symbols being sent we will use the lower case vari-
able names o, r and a for observations, rewards and actions respectively. The process of interaction
produces an increasing history of observations, rewards and actions, o1r1a1o2r2a2o3r3a3o4 . . ..
The agent is simply a function, denoted by π, which is a probability measure over actions con-
ditioned on the current history, for example, π(a3|o1r1a1o2r2). How the agent generates this
distribution over actions is left completely open, for example, agents are not required to be Turing
computable.

The environment, denoted µ, is similarly defined: ∀k ∈ N the probability of okrk, given the
current history is µ(okrk|o1r1a1o2r2a2 . . . ok−1rk−1ak−1). As we desire an extremely general
definition of intelligence for arbitrary systems, our space of environments should be as large as
possible. An obvious choice is the space of all probability measures, however this causes serious
problems as we cannot even describe some of these measures in a finite way. The solution is to
require the measures to be computable. This allows for an infinite space of possible environments
with no bound on their complexity. It also permits environments which are non-deterministic as
it is only their probability distributions which need to be computable. Additionally we bound the
total reward to be 1 to ensure that the future value V π

µ := E
∑

∞

i=1 ri is finite. This space, denoted
E, appears to be the largest useful space of environments.

We want to compute the general performance of an agent in unknown environments. As there
are an infinite number of environments, we cannot simply take an expected value with respect to
a uniform distribution — we must weight some environments more heavily than others. If we
consider the agent’s perspective on the problem, it is the same as asking: Given several different
hypotheses which are consistent with the observations, which hypothesis should be considered the
most likely? This is a fundamental problem in inductive inference for which the standard solution
is to invoke Occam’s razor: Given multiple hypotheses which are consistent with the data, the



simplest should be preferred. As this is generally considered the most intelligent thing to do, we
should test agents in such a way that they are, at least on average, rewarded for correctly applying
Occam’s razor. This means that our a priori distribution over environments should be weighted
towards simpler environments.

As each environment is described by a computable measure, we can measure the complexity
of these in the standard way by considering their Kolmogorov complexity. Specifically, if U is
a prefix universal Turing machine then the Kolmogorov complexity of an environment µ is the
length of the shortest program on U that computes µ, formally K(µ) := minp{l(p) : U(p) = µ}.
We can now define the universal intelligence of an agent π to simply be its expected performance,

Υ(π) :=
∑

µ∈E

2−K(µ)V π
µ .

It is clear by construction that universal intelligence measures the general ability of an agent
to perform well in a very wide range of environments, as required by our informal definition of
intelligence given earlier. The definition places no restrictions on the internal workings of the
agent; it only requires that the agent is capable of generating output and receiving input which
includes a reward signal. Universal intelligence also reflects Occam’s razor in a natural way; like
standard intelligence tests for humans which define the correct answer to a question to be the
simplest consistent with the given information.

By considering V π
µ for a number of basic environments, such as small MDPs, and agents

with simple but very general optimisation strategies, it is clear that Υ correctly orders the relative
intelligence of these agents in a natural way. If we consider a highly specialised agent, for example
IBM’s DeepBlue chess super computer, then we can see that this agent will be ineffective outside
of one very specific environment, and thus would have a low universal intelligence value. This is
consistent with our view of intelligence as being a highly adaptable and general ability.

A very high value of Υ would imply that an agent is able to perform well in many environ-
ments. Such a machine would obviously be of large practical significance. The maximal agent with
respect to Υ is the theoretical AIXI agent which has been shown to have many strong optimality
properties, including being self-optimising in all environments in which this is at all possible for
a general agent [3]. Such results confirm the fact that agents with high universal intelligence are
very powerful and adaptable.

Universal intelligence spans simple adaptive agents right up to super intelligent agents like
AIXI, unlike the pass-fail Turing test which is useful only for agents with near human intelligence.
Furthermore, the Turing test cannot be fully formalised as it is based on subjective judgements.
Perhaps an even bigger problem is that the Turing test is highly anthropocentric, indeed many have
suggested that it is really a test of humanness rather than intelligence. Universal intelligence does
not have these problems as it is formally specified in terms of the more fundamental concept of
complexity.
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