
Tests of Machine Intelligence

Shane Legg1 and Marcus Hutter2

1 IDSIA
Galleria 2, Manno-Lugano CH-6928, Switzerland

shane@idsia.ch www.idsia.ch/∼shane

2 RSISE/ANU/NICTA
Canberra, ACT, 0200, Australia

marcus@hutter1.net www.hutter1.net

Abstract. Although the definition and measurement of intelligence is
clearly of fundamental importance to the field of artificial intelligence,
no general survey of definitions and tests of machine intelligence exists.
Indeed few researchers are even aware of alternatives to the Turing test
and its many derivatives. In this paper we fill this gap by providing a
short survey of the many tests of machine intelligence that have been
proposed.

1 Introduction

Despite solid progress on many fronts over the last 50 years, artificial intelligence
is still a very young field with many of its greatest achievements, and some of
its most fundamental problems, yet to be tackled. From a theoretical perspec-
tive, one of the most fundamental problems in the field is that the very concept
of intelligence remains rather murky. This is somewhat true in the context of
humans, but it is especially true when we consider machines which may have
completely different sensors, bodies, cognitive capacities and live in different en-
vironments to ourselves. What does “intelligence” mean for a machine? Perhaps
the first attempt to answer this question, and certainly the only attempt that
most researchers are aware of, is Alan Turing’s famous imitation game [33]. Tur-
ing recognised how difficult it would be to explicitly define intelligence and thus
attempted to sidestep the issue completely. Although this was a clever move, it
leaves us with a test of machine intelligence that tells us almost nothing about
what intelligence actually is, and thus is of little use as a foundation, either
theoretical or practical, for our research.

Since then, a few bold researchers have tried to tackle this difficult problem
in a more satisfactory way by proposing various definitions and tests of machine
intelligence. By and large, these proposals have been ignored by the community.
Indeed to the best of our knowledge, no general survey of tests and definitions
of intelligence for machines has ever been published.

We feel that to ignore a question as fundamental as the definition of machine
intelligence is a serious mistake. In any science, issues surrounding fundamental



definitions and methods of measurement play a central role and form the foun-
dation on which theoretical advances are constructed and practical advances are
measured. If we are to truly advance as a field over the next 50 years, we will
need to return to this most central of problems in order to secure what artificial
intelligence is and what it aims for. As a first step in this direction, it is necessary
that researchers are at least aware of the many alternatives to Turing’s tests that
have been proposed. In this paper we hope to partly meet this need by providing
the first general survey of tests and definitions of machine intelligence.

2 Turing test and derivatives

The classic approach to determining whether a machine is intelligent is the so
called Turing test [33] which has been extensively debated over the last 50 years
[26]. Turing realised how difficult it would be to directly definite intelligence
and thus attempted to side step the issue by setting up his now famous imita-
tion game: If human judges cannot effectively discriminate between a computer
and a human through teletyped conversation, then we must conclude that the
computer is intelligent.

Though simple and clever, the test has attracted much criticism. Block and
Searle argue that passing the test is not sufficient to establish intelligence [3,
28, 7]. Essentially they both argue that a machine could appear to be intelligent
without having any “real intelligence”, perhaps by using a very large table of
answers to questions. While such a machine might be impossible in practice due
to the vast size of the table required, it is not logically impossible. In which case
an unintelligent machine could, at least in theory, consistently pass the Turing
test. Some consider this to bring the validity of the test into question. In response
to these challenges, even more demanding versions of the Turing test have been
proposed such as the Total Turing test [11], the Truly Total Turing test [27]
and the inverted Turing test [35]. Dowe argues that the Turing test should be
extended by ensuring that the agent has a compressed representation of the
domain area, thus ruling out look-up table counter arguments [6]. Of course
these attacks on the Turing test can be applied to any test of intelligence that
considers only a system’s external behaviour, that is, most intelligence tests.

A more common criticism is that passing the Turing test is not necessary to
establish intelligence. Usually this argument is based on the fact that the test
requires a machine to have a highly detailed model of human knowledge and
patterns of thought, making it a test of humanness rather than intelligence [9,
8]. Indeed even small things like pretending to be unable to perform complex
arithmetic quickly and faking human typing errors become important, something
which clearly goes against the purpose of the test.

The Turing test has other problems as well. Current AI systems are a long
way from being able to pass an unrestricted Turing test. From a practical point
of view this means that the full Turing test is unable to offer much guidance to
our work. Indeed, even though the Turing test is the most famous test of machine
intelligence, almost no current research in artificial intelligence is specifically di-



rected toward being able to pass it. Unfortunately, simply restricting the domain
of conversation in the Turing test to make the test easier, as is done in the Loeb-
ner competition [22], is not sufficient. With restricted conversation possibilities
the most successful Loebner entrants are even more focused on faking human
fallibility, rather than anything resembling intelligence [15]. Perhaps a better
alternative then is to test whether a machine can imitate a child (see for ex-
ample the tests described in Sections 4 and 5). Finally, the Turing test returns
different results depending on who the human judges are. Its unreliability has in
some cases lead to clearly unintelligent machines being classified as human, and
at least one instance of a human actually failing a Turing test. When queried
about the latter, one of the judges explained that “no human being would have
that amount of knowledge about Shakespeare”[29].

3 Compression tests

Mahoney has proposed a particularly simple solution to the binary pass or fail
problem with the Turing test: Replace the Turing test with a text compression
test [23]. In essence this is somewhat similar to a “Cloze test” where an individ-
ual’s comprehension and knowledge in a domain is estimated by having them
guess missing words from a passage of text.

While simple text compression can be performed with symbol frequencies,
the resulting compression is relatively poor. By using more complex models that
capture higher level features such as aspects of grammar, the best compressors
are able to compress text to about 1.5 bits per character for English. However hu-
mans, which can also make use of general world knowledge, the logical structure
of the argument etc., are able to reduce this down to about 1 bit per charac-
ter. Thus the compression statistic provides an easily computed measure of how
complete a machine’s model of language, reasoning and domain knowledge are,
relative to a human.

To see the connection to the Turing test, consider a compression test based on
a very large corpus of dialogue. If a compressor could perform extremely well on
such a test, this is mathematically equivalent to being able to determine which
sentences are probable at a given point in a dialogue, and which are not (for
the equivalence of compression and prediction see [2]). Thus, as failing a Turing
test occurs when a machine (or person!) generates a sentence which would be
improbable for a human, extremely good performance on dialogue compression
implies the ability to pass a Turing test.

A recent development in this area is the Hutter Prize [17]. In this test the
corpus is a 100 MB extract from Wikipedia. The idea is that this should repre-
sent a reasonable sample of world knowledge and thus any compressor that can
perform very well on this test must have a good model of not just English, but
also world knowledge in general.

One criticism of compression tests is that it is not clear whether a powerful
compressor would easily translate into a general purpose artificial intelligence.



4 Linguistic complexity

A more linguistic approach is taken by the HAL project at the company Artificial
Intelligence NV [32]. They propose to measure a system’s level of conversational
ability by using techniques developed to measure the linguistic ability of children.
These methods examine things such as vocabulary size, length of utterances,
response types, syntactic complexity and so on. This would allow systems to be
“. . . assigned an age or a maturity level beside their binary Turing test assessment
of ‘intelligent’ or ‘not intelligent’ ”[31]. As they consider communication to be the
basis of intelligence, and the Turing test to be a valid test of machine intelligence,
in their view the best way to develop intelligence is to retrace the way in which
human linguistic development occurs. Although they do not explicitly refer to
their linguistic measure as a test of intelligence, because it measures progress
towards what they consider to be a valid intelligence test, it acts as one.

5 Multiple cognitive abilities

A broader developmental approach is being taken by IBM’s Joshua Blue project
[1]. In this project they measure the performance of their system by considering
a broad range of linguistic, social, association and learning tests. Their goal is
to first pass what they call a “toddler Turing test”, that is, to develop an AI
system that can pass as a young child in a similar setup to the Turing test. As
yet, this test is not fully specified.

Another company pursuing a similar developmental approach based on mea-
suring system performance through a broad range of cognitive tests is the a2i2
project at Adaptive AI [34]. Rather than toddler level intelligence, their cur-
rent goal to is work toward a level of cognitive performance similar to that of a
small mammal. The idea being that even a small mammal has many of the key
cognitive abilities required for human level intelligence working together in an
integrated way. While this might be useful to guide the development of moderate
intelligence, it is unknown whether it will scale to higher levels of intelligence.
The specific tests being used have not been published.

6 Competitive games

The Turing Ratio method of Masum et al. has more emphasis on tasks and
games rather than cognitive tests. They propose that “. . . doing well at a broad
range of tasks is an empirical definition of ‘intelligence’.”[24] To quantify this
they seek to identify tasks that measure important abilities, admit a series of
strategies that are qualitatively different, and are reproducible and relevant over
an extended period of time. They suggest a system of measuring performance
through pairwise comparisons between AI systems that is similar to that used to
rate players in the international chess rating system. The key difficulty however,
which the authors acknowledge is an open challenge, is to work out what these
tasks should be, and to quantify just how broad, important and relevant each



is. In our view these are some of the most central problems that must be solved
when attempting to construct an intelligence test and thus this approach is
incomplete in its current state.

7 Collection of psychometric tests

An approach called Psychometric AI tries to address the problem of what to
test for in a pragmatic way. In the view of Bringsjord and Schimanski, “Some
agent is intelligent if and only if it excels at all established, validated tests of
[human] intelligence.”[4] They later broaden this to also include “tests of artistic
and literary creativity, mechanical ability, and so on.” With this as their goal,
their research is focused on building robots that can perform well on standard
psychometric tests designed for humans, such as the Wechsler Adult Intelligent
Scale and Raven Progressive Matrices.

As effective as these tests are for humans, they seem inadequate for measur-
ing machine intelligence as they are highly anthropocentric and embody basic
assumptions about the test subject that are likely to be violated by computers.
For example, consider the fundamental assumption that the test subject is not
simply a collection of specialised algorithms designed only for answering com-
mon IQ test questions. While this is obviously true of a human, or even an ape,
it may not be true of a computer. The computer could be nothing more than a
collection of specific algorithms designed to identify patterns in shapes, predict
number sequences, write poems on a given subject or solve verbal analogy prob-
lems — all things that AI researchers have worked on. Such a machine might be
able to obtain a respectable IQ score [25], even though outside of these specific
test problems it would be next to useless. If we try to correct for these limita-
tions by expanding beyond standard tests, as Bringsjord and Schimanski seem
to suggest, this once again opens up the difficulty of exactly what, and what not,
to test for. Psychometric AI, at least as it is currently formulated, only partially
addresses this central question.

8 Smith’s test

The basic structure of Smith’s test is that an agent faces a series of problems
that are generated by an algorithm [30]. In each iteration the agent must try
to produce the correct response to the problem that it has been given. The
problem generator then responds with a score of how good the agent’s answer
was. If the agent so desires it can submit another answer to the same problem.
At some point the agent requests to the problem generator to move onto the next
problem and the score that the agent received for its last answer to the current
problem is then added to its cumulative score. Each interaction cycle counts
as one time step and the agent’s intelligence is then its total cumulative score
considered as a function of time. In order to keep things feasible, the problems
must all be in P, i.e. the solution must be verifiable in polynomial time.



We have two main criticisms of Smith’s definition. Firstly, while for practical
reasons it might make sense to restrict problems to be in P, we do not see why
this practical restriction should be a part of the very definition of intelligence
as Smith suggests. If some breakthrough meant that agents could solve difficult
problems in not just P but sometimes in NP as well, then surely these new agents
would be more intelligent?

Secondly, while the definition is somewhat formally defined, it still leaves open
the important question of what exactly the tests should be. Smith suggests that
researchers should dream up tests and then contribute them to some common
pool of tests. As such, this is not a fully specified test.

9 C-Test

One perspective among psychologists who support the g-factor view of intelli-
gence, is that intelligence is “the ability to deal with complexity”[10]. Thus in
a test of intelligence the most difficult questions are the ones that are the most
complex because these will, by definition, require the most intelligence to solve.
It follows then that if we could formally define and measure the complexity of
test problems we could construct a formal test of intelligence. The possibility
of doing this was perhaps first suggested by the complexity theorist Chaitin [5].
While this path requires numerous difficulties to be dealt with, we believe that
it is the most natural and offers many advantages: It is formally motivated, pre-
cisely defined and potentially could be used to measure the performance of both
computers and biological systems on the same scale without the problem of bias
towards any particular species or culture.

One intelligence test that is based on formal complexity theory is the C-Test
from Hernández [13, 14]. This test consists of a number of sequence prediction
and abduction problems similar to those that appear in many standard IQ tests.
Similar to standard IQ tests, the C-Test always ensures that each question has
an unambiguous answer in the sense that there is always one hypothesis that
is consistent with the observed pattern that has significantly lower complexity
than the alternatives. The key difference to sequence problems that appear in
standard intelligence tests is that the questions are based on a formally expressed
measure of complexity, namely Levin’s computable Kt complexity [20] (rather
than Kolmogorov’s incomputable complexity [21]) to get a practical test. In order
to retain the invariance property of Kolmogorov complexity, Levin complexity
requires the additional assumption that the universal Turing machines are able
to simulate each other in linear time.

The test has been successfully applied to humans with intuitively reasonable
results [14, 12]. As far as we know, this is the only formal definition of intelligence
that has so far produced a usable test of intelligence.

One criticism of the C-Test and Smith’s tests is that the way intelligence is
measured is essentially static, that is, the environments are passive. We believe
that dynamic testing in active environments is a better measure of a system’s
intelligence. To put this argument another way: Succeeding in the real world



requires you to be more than an insightful spectator! One must carefully choose
actions knowing that these may affect the future.

10 Universal intelligence

Another complexity based test is the universal intelligence test [19]. Unlike the
C-Test and Smith’s test, universal intelligence tests the performance of an agent
in a fully interactive environment. This is done by using the reinforcement learn-
ing framework in which the agent sends its actions to the environment and re-
ceives observations and rewards back. The agent tries to maximise the amount
of reward it receives by learning about the structure of the environment and the
goals it needs to accomplish in order to receive rewards.

Formally, the process of interaction produces an increasing history
o1r1a1o2r2a2o3r3a3o4 . . . of observations o, rewards r ≥ 0, and actions a. The
agent is simply a function, denoted by π, which is a probability measure over ac-
tions conditioned on the current history, for example, π(a3|o1r1a1o2r2). The envi-
ronment, denoted µ, is similarly defined: µ(okrk|o1r1a1o2r2a2 . . . ok−1rk−1ak−1).
The performance of agent π in environment µ can be measured by its total ex-
pected reward V π

µ := E[
∑

∞

i=1 ri|µ, π], called value. The largest interesting class
of environments is the class E of all computable probability distributions µ. For
technical reasons, the values are assumed to be bounded by some constant c.

To get a single performance measure V π
µ is averaged over all µ ∈ E. As there

are an infinite number of environments, with no bound on their complexity, it
is impossible to take the expected value with respect to a uniform distribution
— some environments must be weighted more heavily than others. Considering
the agent’s perspective on the problem, it is the same as asking: Given several
different hypotheses which are consistent with the observations, which hypothesis
should be considered the most likely? This is a fundamental problem in inductive
inference for which the standard solution is to invoke Occam’s razor: Given

multiple hypotheses which are consistent with the data, simpler ones should be

preferred. As this is generally considered the most intelligent thing to do, one
should test agents in such a way that they are, at least on average, rewarded for
correctly applying Occam’s razor. This means that the a priori distribution over
environments should be weighted towards simpler environments.

As each environment µ is described by a computable measure, their com-
plexity can be measured with Kolmogorov complexity K(µ), which is simply the
length of the shortest program that computes µ [21]. The right a priori weight
for µ is 2−K(µ). We can now define the universal intelligence of an agent π to
simply be its expected performance,

Υ (π) :=
∑

µ∈E

2−K(µ)V π
µ .

By construction, universal intelligence measures the general ability of an agent to
perform well in a very wide range of environments, similar to the essence of many
informal definitions of intelligence [18]. The definition places no restrictions on



the internal workings of the agent; it only requires that the agent is capable of
generating output and receiving input which includes a reward signal. If we wish
to bias the test to reflect world knowledge then we can condition the complexity
measure. For example, use K(µ|D) where D is some set of background knowledge
such as Wikipedia.

By considering V π
µ for a number of basic environments, such as small MDPs,

and agents with simple but very general optimisation strategies, it is clear that
Υ correctly orders the relative intelligence of these agents in a natural way.
A very high value of Υ would imply that an agent is able to perform well in
many environments. The maximal agent with respect to Υ is the theoretical
AIXI agent which has been shown to have many strong optimality properties
[16]. These results confirm that agents with high universal intelligence are indeed
very powerful and adaptable. Universal intelligence spans simple adaptive agents
right up to super intelligent agents like AIXI. The test is completely formally
specified in terms of fundamental concepts such as universal Turing computation
and complexity and thus is not anthropocentric.

A test based on Υ would evaluate the performance of an agent on a large
sample of simulated environments, and then combine the agent’s performance
in each environment into an overall intelligence value. The key challenge that
needs to be dealt with is to find a suitable replacement for the incomputable
Kolmogorov complexity function, possibly Levin’s Kt complexity [20], as is done
by the C-Test.

11 Summary

We end this survey with a comparison of the various tests considered. Table 1
rates each test according to the properties described below. Although we have
attempted to be as fair as possible, some of the scores we give on this table will
naturally be debatable. Nevertheless, we hope that it provides a rough overview
of the relative strengths and weaknesses of the proposals.

Valid : A test of intelligence should capture intelligence and not some related
quantity. Informative: The result should be a scalar value, or perhaps a vector.
Wide range: A test should cover low levels of intelligence up to super intelli-
gence. General : Ideally we would like to have a very general test that could be
applied to everything from a fly to a machine learning algorithm. Dynamic: A
test should directly take into account the ability to learn and adapt over time.
Unbiased : A test should not be biased towards any particular culture, species,
etc. Fundamental : We do not want a test that needs to be changed from time to
time due to changing technology and knowledge. Formal : The test should be pre-
cisely defined, ideally using mathematics. Objective: The test should not appeal
to subjective assessments such as the opinions of human judges. Fully Defined :
Has the test been fully defined, or are parts still unspecified? Universal : Is the
test universal, or is it anthropocentric? Practical : A test should be able to be
performed quickly and automatically. Test vs. Def : Finally we note whether the
proposal is more of a test, more of a definition, or something in between.
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Turing Test • · · · • · · · · • · • T
Total Turing Test • · · · • · · · · • · · T
Inverted Turing Test • • · · • · · · · • · • T
Toddler Turing Test • · · · • · · · · · · • T
Linguistic Complexity •  • · · · · • • · • • T
Text Compression Test •   • · • •    •  T
Turing Ratio •    ? ? ? ? ? · ? ? T/D
Psychometric AI   •  ? • · • • • · • T/D
Smith’s Test •   • · ?    · ? • T/D
C-Test •   • ·        T/D
Universal Intelligence            · D

Table 1. In the table
 means “yes”, •

means “debatable”,
· means “no”, and
? means unknown.
When something is
rated as unknown
that is usually be-
cause the test in
question is not
sufficiently specified.
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21. M. Li and P. M. B. Vitányi. An introduction to Kolmogorov complexity and its
applications. Springer, 2nd edition, 1997.

22. H. G. Loebner. The Loebner prize — The first Turing test.
http://www.loebner.net/Prizef/loebner-prize.html, 1990.

23. M. V. Mahoney. Text compression as a test for artificial intelligence. In
AAAI/IAAI, 1999.

24. H. Masum, S. Christensen, and F. Oppacher. The Turing ratio: Metrics for open-
ended tasks. In GECCO 2002: Proceedings of the Genetic and Evolutionary Com-
putation Conference, pages 973–980, New York, 2002. Morgan Kaufmann Publish-
ers.

25. P. Sanghi and D. L. Dowe. A computer program capable of passing I.Q. tests. In
Proc. 4th ICCS International Conference on Cognitive Science (ICCS’03), pages
570–575, Sydney, NSW, Australia, 2003.

26. A. Saygin, I. Cicekli, and V. Akman. Turing test: 50 years later. Minds and
Machines, 10, 2000.

27. P. Schweizer. The truly total Turing test. Minds and Machines, 8:263–272, 1998.
28. J. Searle. Minds, brains, and programs. Behavioral & Brain Sciences, 3:417–458,

1980.
29. S. Shieber. Lessons from a restricted Turing test. CACM: Communications of the

ACM, 37, 1994.
30. W. D. Smith. Mathematical definition of “intelligence” (and consequences).

http://math.temple.edu/∼wds/homepage/works.html, 2006.
31. A. Treister-Goren, J. Dunietz, and J. L. Hutchens. The developmental approach

to evaluating artificial intelligence – a proposal. In Performance Metrics for Intel-
ligence Systems, 2000.

32. A. Treister-Goren and J. L. Hutchens. Creating AI: A unique interplay between
the development of learning algorithms and their education. In Proceeding of the
First International Workshop on Epigenetic Robotics, 2001.

33. A. M. Turing. Computing machinery and intelligence. Mind, October 1950.
34. P. Voss. Essentials of general intelligence: The direct path to AGI. In B. Goertzel

and C. Pennachin, editors, Artificial General Intelligence. Springer-Verlag, 2005.
35. S. Watt. Naive psychology and the inverted Turing test. Psycoloquy, 7(14), 1996.


