
Solomonoff Induction

Shane Legg

May 16, 2004

1

Contents

1 Prerequisite Material 5
1.1 Mathematical Notation . 5
1.2 Strings and Codes . 5
1.3 Measure Theory . 7
1.4 Spaces of Sequences and Strings 8
1.5 Kullback Divergence . 10
1.6 Recursive Function Theory . 11
1.7 Algorithmic Information Theory 14

2 Solomonoff Induction 16
2.1 The General Process of Inductive Learning 16
2.2 Solomonoff’s Induction Method 17
2.3 Solomonoff’s Universal Prior . 19
2.4 Dominant Enumerable Semi-Measures 20
2.5 Completeness of Solomonoff Induction 24
2.6 Properties of Dominant Measures 26

2

Introduction

Solomonoff’s induction method is an interesting theoretical model of what could
be considered a perfect inductive inference system. Furthermore, it can be
proven that a whole range of commonly used induction principles are computable
approximations or special cases of Solomonoff’s method. As such, Solomonoff
induction provides us with a powerful and unifying perspective on the many
diverse principles and methods that exist to deal with induction problems.

The foundations of Solomonoff induction are well rooted in the mathemat-
ics of computation and information theory. Indeed, due to his early work on
induction, Solomonoff is now considered the father of the field of algorithmic
information theory; a field which has exposed many deep connections between
topics such as randomness, computability, complexity, chaos and Gödel incom-
pleteness. It is perhaps surprising then that in many fields which deal with
induction problems, for example statistics, Solomonoff’s work on induction is
almost completely unknown. It would seem that one of the reasons for this lies in
the diverse range of background material demanded of the reader. For example,
readers from a statistical background, while familiar with Bayes’ theorem and
measure theory, are usually unfamiliar with topics such as coding theory, com-
putability theory and algorithmic information theory. Similarly readers from
other disciplines are not usually equipped with all the necessary background.

As such, the first part of this report is spent briefly covering all the necessary
background topics. In this way we hope to make the subject available to as wide
an audience as possible. In the second part we present the basic essentials of
Solomonoff’s inductive inference method. The approach taken is not that origi-
nally used by Solomonoff but rather we come from the more general perspective
of dominant enumerable semi-measures with Solomonoff’s prior being a special
case.

Because the purpose of this report is simply to serve as an introduction
to Solomonoff’s approach to inductive inference and not as an introduction to
general inductive inference theory, it is reasonable to assume that the reader is
already familiar with Bayes’ theorem and the problems associated with selecting
prior distributions. In fact one can view Solomonoff’s inference method to
be essentially just a general purpose Bayesian inference system with a special
information theoretic universal prior.

Some effort has gone into keeping this work as small as possible without be-
coming terse. As such, many interesting connections to other topics and related
issues are absent. This has been done to keep the demands on the reader (and
myself!) to a minimum. Most of the proofs I have either extensively reworked
myself or are of my own creation. This has further allowed me to reduce the
complexity of the key results and should also add a more homogeneous feel to
the material.

3

Acknowledgements

This work draws extensively and quite liberally from two main sources, namely
Cristian Calude’s book “Information and Randomness” [1] and Ming Li and
Paul Vitányi’s book “An Introduction to Kolmogorov Complexity and its Ap-
plications” [3]. The first book, while not dealing with inductive inference did
however provide much of the necessary background material in a very rigorous
and concise form. In particular the last two sections of the first chapter follow
this book. All of the theorems in the first chapter appear in this book in some
form.

The book by Li and Vitányi provided most of the material on Solomonoff
induction itself. This book is fairly readable and covers an enormous range of
topics related to algorithmic information theory (Kolmogorov complexity) and
examines many connections to other areas of research. This book will not doubt
become a classic in the field.

All of the theorems and lemmas in the second chapter appear either in this
book or in their paper [2]. However, except for corollary 2.4.1 and theorems 2.5.1
and 2.6.1, the actual proofs in this text are either of my own creation or are
significantly reworked versions of proofs from their book.

The main result of this work (theorem 2.5.1) was originally due to Ray
Solomonoff. The original proofs of many other results which appear here, such
as the invariance theorem, are also due to Solomonoff and appear in some form
in either [4] or [5]. The proof of theorem 2.5.1 which we use is due to P. Gács
and seems to only appear in [3].

For those interested in a very detailed look at dominant enumerable semimea-
sures form slightly different perspective to that given here, I recommend Zvonkin
and Levin’s paper [6].

4

1 Prerequisite Material

This chapter briefly covers the prerequisite material necessary for us to be able
to study Solomonoff’s inductive inference method. We start by clarifying our
usage of mathematical notation.

1.1 Mathematical Notation

Let N, Q, Z and R represent the natural, rational, integer and real numbers
respectively. Wherever possible the variable names i, j, k, l, m and n will
be used for integers variables. The symbol ≡ is used to indicate that two
expressions are equal by definition. For example, define R+ ≡ {x ∈ R : x ≥ 0}.
The minimum of an empty set is defined to be ∞. The symbols ⊂ and ⊆
express the strict subset and subset relations respectively. Define A \B ≡ {a ∈
A : a /∈ B}. Let ℘(X) ≡ {A : A ⊆ X} be the power set of X and let #X be
the cardinality of the set X. So for example, if X = {0, 1, 9} then #X = 3
and ℘(X) = {∅, {0}, {1}, {9}, {0, 1}, {0, 9}, {1, 9}, {0, 1, 9}}. A countable subset
of the power set of X , written {En} ∈ X, is called pairwise disjoint if for all
n 6= m, En ∩Em = ∅. If it is also the case that E1 ∪E2 ∪ · · · = X, then we call
the collection of sets {En} a partition of X. For example, the collection of sets
of the form (i, i + 1] where i ∈ Z form a partition of R.

A partial function ψ, written ψ : X
o→ Y , is a function defined on a set

Z ⊆ X, where Z is called the domain of ψ and is denoted dom(ψ). If X =
dom(ψ) we say that ψ is a total function, or more simply a function, and we
indicate this by writing X → Y . For x /∈ dom(ψ) we put ψ(x) = ∞. The set
{ψ(x) : x ∈ dom(ψ)} is called the range of ψ and is denoted range(ψ). Two
partial functions ψ, φ : X

o→ Y are said to be equal iff dom(ψ) = dom(φ) and
for all x ∈ dom(ψ), ψ(x) = φ(x). For two functions f : Y → Z and g : X → Y
define the composition of f and g to be f ◦ g(x) ≡ f(g(x)).

1.2 Strings and Codes

An alphabet is a finite set with cardinality at least two. We call the elements
of an alphabet symbols. For example the sets {a, b, c, d, . . . , z}, {0, 1, 2, 3, . . . , 9}
and {R, 7, x} are all alphabets. Throughout this report we will make use of
an arbitrary alphabet A = {a1, a2, . . . , aQ}. Thus henceforth we will use Q to
represent the number of symbols in our alphabet A.

By An we mean the usual n-fold Cartesian product of sets,

An ≡
n∏

i=1

A.

Thus x ∈ An is an ordered n-tuple: x = (x1, x2, . . . , xn) where each xi ∈ A.
Now define

A+ ≡
∞⋃

n=1

An

and call λ ≡ ∅ the empty string. Further define

A∗ ≡ {λ} ∪ A+

5

and call x ∈ A∗ a string. Wherever possible the variable names x, y and z will
be used for arbitrary strings.

We denote the binary operation of concatenation over strings by juxtaposi-
tion and define the operation as the Cartesian product of the two strings; that
is,

xy ≡ x× y.

Thus if x = (x1, . . . , xn) ∈ An and y = (y1, . . . , ym) ∈ Am then we define
xy = (x1, . . . , xn, y1, . . . , ym) ∈ An+m. It can easily be seen that if x, y, z ∈ A∗
then,

xy ∈ A∗,
x(yz) = (xy)z = xyz

and
λx = xλ = x.

In other words, A∗ is closed under concatenation, concatenation is associative
and λ is the identity element. As concatenation is associative and not commuta-
tive we can adopt a more compact notation and simply write x = x1x2x3 · · ·xn

for an arbitrary string.
If x ∈ An then we define |x| ≡ n and call this the length of the string x. In

particular |λ| = 0 and we see that

∀x, y ∈ A∗ |xy| = |x|+ |y|.
As x ∈ An iff |x| = n, we will often use the notation |x| = n to denote strings
from An as it is more compact in large equations.

Every total ordering on A, say a1 ≤ a2 ≤ a3 ≤ · · · ≤ aQ, induces a quasi-
lexicographical order on A∗:

λ < a1 < a2 < · · · < aQ < a1a1 < a1a2 < · · ·
< a1aQ < a2a0 < · · · < a1a1a1 < · · · < aQaQaQ < · · · .

Let string : N→ A∗ be the bijective function such that string(n) is the nth
string according to the above quasi-lexicographical order on A∗.
Definition 1.2.1 We say that a string x ∈ A∗ is a prefix of a string y ∈ A∗
iff

∃z ∈ A∗ y = xz

and denote this x ≤p y. We say that a set S ⊂ A∗ is prefix free iff

∀x, y ∈ S x ≤p y ⇒ x = y.

For example, if A = {a, b, c, . . . , z} then bed ≤p bedroom and aaza ≤p aazaaza.

Definition 1.2.2 Let B = {b1, b2, . . .} be a finite or infinite set. A code is an
injective function ψ : B → A∗. We call the elements of range(ψ) code-strings.
If the set of code strings is prefix-free we say that psi is an instantaneous code.

Instantaneous codes are particularly important in practice as the prefix-free
quality of the code strings allows a decoder to determine any particular code
string without having to read beyond the end of the code string. Another useful
property is the following elementary inequality:

6

Theorem 1.2.1 (Kraft Inequality) If n1, n2, . . . ∈ N are the lengths of code-
strings of an instantaneous code φ : B → A∗ then

∞∑

i=1

Q−ni ≤ 1.

Proof. To appear. . . ¤

By Aω we mean the countably infinite Cartesian product of A; that is,

Aω ≡
∞∏

i=1

A.

Alternatively we could have defined Aω ≡ {x1x2x3 · · · : xi ∈ A}. We call
x ∈ Aω a sequence and denote it in bold face. Intuitively a sequence is like
a string of infinite length. Individual sequences will not be of much use to us
in what follows; rather we will be interested in various sets of sequences. Of
particular interest will be sets of all sequences which have a common string at
their beginning, that is, sets of the form

xAω ≡ {x1x2 . . . xny1y2y3 . . . : yi ∈ A},
where x = x1 . . . xn ∈ A∗.

1.3 Measure Theory

While probability theory over discrete spaces is very well known, the mathe-
matics for continuous spaces is fairly specialised. For this reason we give a very
brief outline of the concepts we will need. There are countless books on this
topic so the interested reader will have no trouble locating further information.

A probability function, or in this context a probability measure, is a function
which assigns probabilities to various subsets of a sample space Ω. These subsets
of Ω form what is called a σ-algebra.

Definition 1.3.1 A collection D ⊆ ℘(Ω) is called a σ-algebra on Ω iff

∅ ∈ D,

A ∈ D ⇒ Ā ∈ D
and

{An} ∈ D ⇒
∞⋃

n=1

An ∈ D.

If D is a σ-algebra over Ω then we call the ordered pair (Ω,D) a measurable
space. Clearly for any set Ω, both ℘(Ω) and {∅,Ω} are σ-algebras. Less trivial σ-
algebras are more difficult to explicitly define. Often when we want a σ-algebra
on a space we already have some collection of subsets of the space and we would
like the σ-algebra to include these sets. The following theorem is useful in this
situation.

Theorem 1.3.1 If G ⊆ ℘(Ω) and G 6= ∅ then there exists a unique σ-algebra
σ(G) which is the smallest σ-algebra such that G ⊆ σ(G).

7

Proof Sketch. It can easily be shown that the intersection of any number of
σ-algebras is also a σ-algebra. Thus we can simply define σ(G) to be the inter-
section of all σ-algebras which are super sets of G. ¤

Now that we have the basic concepts of σ-algebras and a method to construct
them we now turn our attention to the functions which operate on these spaces.

Definition 1.3.2 Let (Ω, D) be a measurable space. A function µ : D → R+ is
a measure iff for all mutually disjoint {En} ∈ D we have

µ

(∞⋃
n=1

En

)
=

∞∑
n=1

µ(En).

If has the additional property that (Ω) = 1 then we call a probability measure.

If is a measure over a measurable space (Ω,D), then we call the tuple (Ω, D)
a measure space. If is also a probability measure on this measurable space,
(Ω, D, µ) is called a probability space.

A similar, but somewhat less intuitive concept is that of a semi-measure.
Semi-measures are not a part of classical measure theory but they are useful
when considering certain computability aspects of measures.

Definition 1.3.3 Let (Ω, D) be a measurable space. A function µ : D → R+ is
a semi-measure iff µ(Ω) ≤ 1 and for all mutually disjoint {En} ∈ D we have

µ

(∞∑
n=1

En

)
≥

∞∑
n=1

µ(En).

Thus we can see that the class of probability measures is a subset of the class
of semi-measures. One can think of a semi-measure which isn’t a probability
measure as being some kind of “defective” probability measure. Shortly we will
examine a method for building semi-measures up to be probability measures.

1.4 Spaces of Sequences and Strings

Now that we have the basic rudiments of measure theory we now consider how
this applies in our context of strings and sequences. We will soon be interested
in predicting digits in a sequence after having seen a finite number of initial
digits. This means that we need to have probability measures defined over sets
of sequences which have common initial digits. Thus we require a σ-algebra
which contains the following collection of sets;

P ≡ {xAω : x ∈ A∗} ∪ {∅}.
By theorem 1.3.1 we can simply define S ≡ σ(P) to get the required σ-algebra
on Aω.

While the creation of the measurable space (Aω,S) puts us on technically
secure ground when considering the probability of various sets of sequences, it is
still the case that for the purposes of induction we are really only interested in
the probabilities of elements of P. Thus it seems reasonable to save oneself the
difficulties in working with S by restricting our analysis to the more simplistic
space P. Indeed, certain equivalence results exist that allow us to do this. It is
clear from the definition of P that P \ {∅} is isomorphic to A∗. Furthermore,
the following result holds;

8

Theorem 1.4.1 There exists a bijective correspondence between the probability
measures defined on S and the functions h : A∗ → [0, 1] such that

h(λ) = 1,

and
∀x ∈ A∗ h(x) =

∑

|a|=1

h(xa).

Proof. To appear. . . ¤

A similar result holds for semi-measures. This means that we can investigate
probabilities over S by looking at functions over A∗. With these results in mind
we can make the following definitions for functions over A∗.
Definition 1.4.1 A function µ : A∗ → [0, 1] is a probability measure iff,

µ(λ) = 1

and
∀x ∈ A∗ u(x) =

∑

|a|=1

µ(xa).

Definition 1.4.2 A function A∗ → [0, 1] is a semi-measure iff,

µ(λ) ≤ 1

and
∀x ∈ A∗ µ(x) ≥

∑

|a|=1

µ(xa).

Finally let us examine further the relationship between probability measures
and semi-measures in this new context. We may create a probability measure
µ from a semi-measure ρ by adding an extra symbol ‘u’ to the alphabet as
follows. Firstly; as we want µ to be a probability measure, it must be the case
that µ(λ) = 1 and

∀x ∈ A∗ µ(x) =
∑

|a|=1

µ(xa) + µ(xu).

We also want µ and ρ to coincide over A+, thus set µ(x) ≡ ρ(x) for all x ∈ A+.
It now follows that

∀x ∈ A∗ µ(xu) = ρ(x)−
∑

|a|=1

ρ(xa).

The problem is that a semi-measure can’t tell us what is going on for strings
that have u’s which are not at the end of a string. There simply isn’t enough
information in the semi-measure. Hence the extension of the semi-measure to
a probability measure by this method is non-unique. Nevertheless, this method
will be sufficient for our purposes.

9

1.5 Kullback Divergence

Kullback divergence measures how much two measures differ from each other
and so will be useful to analyse the difference in predictive accuracy between
using a universal prior and the true prior.

Definition 1.5.1 The Kullback divergence of a measure µ with respect to a
semi-measure ρ is defined as

D(µ||ρ) ≡
∑

|a|=1

µ(a) ln
µ(a)
ρ(a)

.

We will generalise this further and define,

Dn
i (µ||ρ) ≡

∑

|x|=i−1

µ(x)
∑

|y|=n

µ(xy|x) ln
µ(xy|x)
ρ(xy|x)

.

Thus we can see that,

Dn
1 (µ||ρ) = µ(λ)

∑

|y|=n

µ(λy|λ) ln
µ(λy|λ)
ρ(λy|λ)

=
∑

|y|=n

µ(y) ln
µ(y)
ρ(y)

,

and so D1
1(µ||ρ) ≡ D(µ||ρ). In a similar fashion we write Dn and Dm for Dn

1

and D1
m

We will require the following two lemmas:

Lemma 1.5.1 Let µ be a measure and ρ a semi-measure. It follows that

Dn(µ||ρ) =
n∑

i=1

Di(µ||ρ).

Proof. This result follows from the above defintions and a simple application of
Bayes’ theorem.

Dn(µ||ρ) =
∑

|x|=n

µ(x) ln
µ(x)
ρ(x)

=
∑

|x|=n−1

∑

|y|=1

µ(xy) ln
µ(xy)
ρ(xy)

=
∑

|x|=n−1

µ(x)
∑

|y|=1

µ(xy|x) ln
µ(xy|x)µ(x)
ρ(xy|x)ρ(x)

=
∑

|x|=n−1

µ(x) ln
µ(x)
ρ(x)

∑

|y|=1

µ(xy|x)

+
∑

|x|=n−1

µ(x)
∑

|y|=1

µ(xy|x) ln
µ(xy|x)
ρ(xy|x)

=
∑

|x|=n−1

µ(x) ln
µ(x)
ρ(x)

+ Dn(µ||ρ)

= Dn−1(µ||ρ) + Dn(µ||ρ).

10

And so by induction on n we obtain the result. ¤

Lemma 1.5.2 Let µ and ρ be two probability measures over A∗ where A =
{0, 1}. It follows that for any x ∈ A∗,

D|x|+1(µ||ρ) ≥ 2(µ(x0)− ρ(x0))2.

Proof. Let f(µ, ρ) = D|x|+1(µ||ρ) − 2(p − q)2 where p = µ(x0) and q = ρ(x0).
Thus,

f(µ, ρ) = p ln
p

q
+ ln

1− p

1− q
− p ln

1− p

1− q
− 2(p− q)2.

And so,

∂f

∂q
= 4(p− q)− p

q
− p

1− q
+

1
1− q

= (q − p)
4(q − 1

2)2

q(1− q)
.

Thus the sign of ∂f/∂g is just the sign of the factor q− p as q ∈ [0, 1] and so q,
(1− q) and (q − 1

2)2 are all positive. If µ ≡ ρ then f(µ, ρ) = 0, and so for all p
and all q we see that f ≥ 0. That is, D|x|+1(µ||ρ) ≥ 2(µ(x0)− ρ(x0))2. ¤

1.6 Recursive Function Theory

Informally an algorithm for computing a partial function ψ : N o→ N is a finite set
of instructions which, given an input x ∈ dom(ψ), yields after a finite number t <
∞ of steps, the output y = ψ(x). The algorithm must specify unambiguously
how to obtain each step in the computation from the previous steps and from
the input. We call such a partial function ψ a partial computable function. If
ψ also belongs to the set of total functions, then psi is called a computable
function. These informal notions have as formal models the partial recursive
functions and the recursive functions respectively. We call any function which
is not partial recursive, non-recursive.

Perhaps the real significance of these concepts come from a central result
in the theory known as Turing’s Thesis. Informally it tells us that the partial
recursive functions are the ones which we could in theory calculate if given
a sufficient, but still finite, amount of time, money, people, computers etc.
Non-recursive functions on the other hand can’t be calculated even with such
generous resources avaliable and so in a practical sense aren’t all that useful.
From this rather simplistic standpoint, we can see that there is an issue of real
world practicality at stake here; though it is worth noting that in reality it is
only a small subset of even the partial recursive functions which one could ever
hope to calculate as the resources avaliable are always limited. For example,
while a function which requires a trillion billion supercomputers to calculate is
technically speaking still recursive, it certainly isn’t very useful in practice.

This is important to us as it is clear that any inductive inference method
which is not a recursive function would be of no practical use to anybody.
Likewise, any hypothesis learned by an inductive inference method which wasn’t
a recursive function wouldn’t be of much practical use either.

11

The above notions of computability can be readily extended to cover all sorts
of functions with domains and ranges other than N; of particular interest to us
are functions over strings and sets of sequences. There are many equivalent
ways to approach this topic and far more detailed developments can be found
in many texts. For our purposes the following quick overview will suffice.

It is at once clear that given an alphabet and an associated total ordering
on its symbols, the functions string and string−1 are both unambiguous and
can be calculated with finite resources. Intuitively then we can see that both
of these functions are what we would call recursive. It also seems intuitively
clear that the composition of any number of partial recursive functions produces
a partial recursive function. Thus the following definition should come as no
surprise;

Definition 1.6.1 A partial function ψ : A∗ o→ A∗ is partial recursive if there
exits a partial recursive function f : N o→ N such that

∀x ∈ A∗ ψ(x) = string(f(string−1(x))).

Likewise a function ψ : A∗ o→ A∗ is recursive if there exists a recursive function
f : N→ N such that the above condition holds.

In a similar fashion other definitions can be developed for functions with mul-
tiple arguments and other domains and ranges. The following is a particularly
important type of partial recursive function;

Definition 1.6.2 We call a partial recursive function ψ : (A∗)n × N → A∗
universal if for all partial recursive functions φ : (A∗)n → A∗ there exists i ∈ N
such that,

∀x ∈ (A∗)n ψi(x) = φ(x).

The cornerstone of the theory is the existence of such functions:

Theorem 1.6.1 For all n ∈ N there exists a universal partial recursive function
ψ : (A∗)n × N→ A∗.

Proof. Omitted. ¤

Our comment about the composition of partial recursive functions being
partial recursive can now be formalised in this context:

Theorem 1.6.2 (Uniform Composition Property) For a universal partial
recursive function ψ : (A∗)n × N→ A∗ there exists a recursive function comp :
N× N→ N such that

∀x ∈ (A∗)n ψcomp(i,j)(x) = ψi ◦ ψj(x).

Proof. Ommitted. ¤

Pick a universal partial recursive function ψ : A∗ × N → A∗ and call the
enumeration ψ1, ψ2, . . . the standard enumeration of partial recursive functions.

As the function < ·, · > : A∗ × A∗ → A∗ is bijective and recursive, we
can apply the uniform composition property to obtain more general bijective
recursive functions < > : (A∗)n × A∗ → A∗. For example we could define

12

< x, y, z > ≡ < x, < y, z >> for all x, y, z ∈ A∗. Thus the number of variables of
any partial recursive function can be reduced to one and therefore the standard
enumeration ψ1, ψ2, . . . and the function < ·, · > are all that is needed for the
general theory.

Definition 1.6.3 A set is recursively enumerable if it is empty or the range of
a total recursive function. A set is recursive if it has a recursive characteristic
function.

Obviously if a set is recursive then it is recursively enumerable.
Now we extend the notion of recursiveness to cover real valued functions and

also introduce the weaker properties of enumerability and co-enumerability of
functions.

Definition 1.6.4 A function f : A∗ → R is enumerable if the set {(x, r) ∈
A∗ ×Q : r < f(x)} is recursively enumerable. If −f is an enumerable function
then we say that f is co-enumerable. If f is both enumerable and co-enumerable,
we say that f is recursive.

The following lemmas gives us a similar but often more convenient and
perhaps more intuitive expressions for enumerable and recursive real valued
functions.

Lemma 1.6.1 A real function f : A∗ → R is enumerable iff there exists a
recursive function g : A∗ × N→ Q such that for all x ∈ A∗,

∀k ∈ N gk(x) ≤ gk+1(x)

and
f(x) = lim

k→∞
gk(x).

A similar result holds for co-enumerable functions.

Proof. To appear. . . ¤

Thus an enumerable function f : A∗ → R is one which we can approximate
from below while a co-enumerable function is one which we can approximate
from above. Trivially we see that any recursive function is enumerable.

Lemma 1.6.2 A function f : A∗ → R is recursive iff there exits a recursive
function g : A∗ × N→ Q such that for all x ∈ A∗,

∀k ∈ N |f(x)− gk(x)| < 1
k

.

Proof. To appear. . . ¤

Thus a recursive function f : A∗ → R is one which we can approximate to any
specified degree of accuracy.

13

1.7 Algorithmic Information Theory

Fundamental to algorithmic information theory is a particular type of partial
recursive function called a computer.

Definition 1.7.1 A (prefix free or Chaitin) computer is a partial recursive
function C : A∗ × A∗ o→ A∗ such that the set {p : d ∈ A∗, C(p, d) 6= ∞} is
prefix free.

An intuitive interpretation is to consider p to be a program which the com-
puter C executes and d some data which the program has access to. Of partic-
ular importance is the following type of computer:

Definition 1.7.2 A computer U is universal if for each computer C there exists
c ∈ N depending only on U and C such that whenever C(p, d) 6= ∞,

∃p′ ∈ A∗ U(p′, d) = C(p, d)

such that
|p′| ≤ |p|+ c.

Thus a universal computer is one which we can program to simulate the
operation of any other computer. Furthermore, the additional program length
needed to simulate any specific computer is of a fixed length and depends only
on the universal computer we are using and the computer we wish to simulate.

Theorem 1.7.1 There effectively exists a universal computer.

Proof Sketch. This result is a direct consequence of the existence of universal
partial recursive functions and the uniform composition property. ¤

We are now in a position to be able to define a measure of the information
content of individual strings.

Definition 1.7.3 Let C be a computer. The (prefix or Chaitin) complexity
relative to C of a string x ∈ A∗ is defined as

HC(x) ≡ min{|p| : p ∈ A∗, C(p, λ) = x}.

As we will soon prove, this function takes on particular importance when
the computer C is a universal computer. Firstly we pick a universal computer
U and call it the reference computer.

Definition 1.7.4 Call the function H(x) ≡ HU (x) the complexity function and
for any string x ∈ A call H(x) the complexity of x.

The real significance of this function comes from the following useful prop-
erty:

Theorem 1.7.2 (Invariance Theorem) For every computer C there exists a
constant c depending only on U and C such that

∀x ∈ A∗ H(x) ≤ HC(x) + c.

14

Proof. From the above definitions it immediately follows that for all x ∈ A∗,

HC(x) = min{|p| : p ∈ A∗, C(p, λ) = x}
≥ min{|p′| − c : p′ ∈ A∗,U(p′, λ) = x}
= H(x)− c.

And so we have the result. ¤

Thus we are able to measure the information content of an arbitrary string
with a method which is, at least up to a constant, independent of the particular
reference machine we have chosen. This gives our measure of information some
degree of universality. However this comes at a price as the following theorem
shows.

Theorem 1.7.3 H(x) is not recursive.

Proof. To appear. . . ¤

The fact that the complexity function is not recursive is unfortunate and we
will deal with some of its repercussions later on. The weaker condition of co-
enumerability does however hold:

Theorem 1.7.4 H(x) is co-enumerable.

Proof. To prove that H(x) is co-enumerable we must show that the set {(x, r) ∈
A∗ × Q : H(x) < r} is recursively enumerable. This is easy since H(x) < r iff
there exists y ∈ A∗ and t ∈ N such that |y| < n and U(y, λ) = x in at most t
steps. ¤

15

2 Solomonoff Induction

In this chapter we examine Solomonoff’s all purpose induction method and prove
some impressive results about its performance. Our approach to the topic isn’t
the exact path the Solomonoff originally used himself; rather we come from the
more mathematically general perspective of enumerable semimeasures. We do
however try to give the intuitive motivation behind the topic that Solomonoff
put forward.

2.1 The General Process of Inductive Learning

Solomonoff’s induction method is an attempt to design a general all purpose
inductive inference system. Ideally such a system would be able to accurately
learn any meaningful hypothesis from a bare minimum of appropriately format-
ted information. Before trying to define such an inference system and analyse
its behaviour, we first need to form a reasonable idea as to what such a system
might look like. To help us do this, let’s imagine some sort of super intelligent
device or being that operates as a perfect inductive inference system. For the
sake of our thought exercise we will call this machine or being Zed.

Our question is: What properties will Zed have? Firstly, Zed mustn’t be
too narrow minded as to what could potentially be a correct hypothesis. It
is however clear that any non-computable hypothesis would not be of much
use to anybody. Hence restricting Zed’s set of possible hypotheses to only the
computable ones seems reasonable enough. Exactly what this means will become
clear when we formalise all these ideas later on.

Next consider what sort of knowledge Zed has about things before processing
any data. For Zed to be truly all purpose, Zed must be able to function in
situations where no prior information about the system under investigation is
avaliable. For example, in a totally artificial inductive inference problem, even
complete knowledge of all the laws of physics would be of no help. This is not to
say that Zed shouldn’t be able to utilise prior information, but simply that prior
information is an extra rather than an essential part of Zed’s operation. Thus if
we consider Zed’s initial state to be independent of the problem at hand, then
it follows that this state must be one of complete ignorance about the nature of
the system under investigation.

Now that we have some idea about Zed’s initial state and the set of potential
hypotheses that Zed is going to consider, we next look at what actions Zed will
need to be able to perform. Obviously Zed will need to be able to process
information in order to determine which hypotheses are likely and which are
unlikely or even impossible. Perhaps Zed’s first source of such information would
be the prior information mentioned above, that is; any knowledge relevant to
the system under investigation that comes from work conducted prior to the
current investigation. For example, knowledge of the laws of physics would
often be helpful when studying real physical systems. It might be the case
that others have studied similar systems before. It could even be the case that
the correct hypothesis is already known! Thus, just as any serious scientist
checks what information already exists before contributing his own ideas and
performing his own experiments etc, Zed must at least have the ability to utilise
such information when available.

Having exhausted all information deriving from pervious work, the next

16

avenue must be for Zed to gather further information himself through experi-
mentation and observation. This information will further refine Zed’s estimate
of the true hypothesis.

It is then possible that the experimental information might point to further
areas of previous work that should be taken into account. Perhaps it will indicate
new sets of experiments that should be carried out. In this way Zed gathers
more and more information, continually updating and refining his degree of
belief in the various possible hypotheses. This process is of course the process
by which all scientists operate. Various hypotheses gain or lose favour in the
light of new information or even old information which has been over looked.

2.2 Solomonoff’s Induction Method

Now that we have a vague idea of what an ideal all purpose inductiveinference
system might look like, let us now try to put some flesh on these ideas by
attempting to define an induction system in Zed’s image.

Consider the induction process: Increasingly large amounts of information
about experiments, results, known facts etc produce increasingly accurate esti-
mates of the likelihood of the various hypotheses. Our first task is to formalise
the way we represent the information from experiments etc. We can do this
using the ideas on codes and strings from chapter 1. Perhaps an example is the
best explanation.

Imagine that we have a single coin and it is our job to figure out the prob-
ability of getting heads. Presumably we would go about this by tossing the
coin a large number of times and noting what happened. With an alphabet
A = {H, T} we can simply record these results in the form of a sting, for exam-
ple HHHTTHTHTHTTTH. It is not hard to see that all sorts of measured
results could be recorded in a similar fashion.

While this is adequate for our simple coin tossing example, in more complex
situations we may also need to include information such as the experimental
setup used to obtain specific results. For example, imagine that we have three
coins numbered 1, 2 and 3 and it is our job to determine which coin is biased.
This can simply be done by setting A = {1, 2, 3,H, T} and then recording which
coin was tossed followed by the result. Thus the string 1H3T2H2T would
indicate that we tossed coin 1 first and obtained a head, then we tossed coin 3
and obtained a tail and so on.

As we perform more experiments the data string describing our experiments
and results grows longer and longer. Because the number of experiments we
can perform is in theory unlimited we can think of our observed data string as
being a prefix of some infinitely long sequence. The longer our finite data string
grows the smaller the set of sequences with that prefix becomes. Now consider
the hypotheses themselves. They are simply statements about the way in which
a system behaves, or in this case, statements about various strings which could
describe a systems behaviour. Hypotheses which state that the observed data
string so far could not have occurred are obviously incorrect hypotheses. On
the other hand, a hypothesis which considers the observed data string to be
reasonably likely is clearly more likely to be the correct hypothesis.

Thus it is not hard to see that these hypotheses are in fact probability
measures over the space A∗ or more correctly, the corresponding probability
measures over the measurable space (Aω,S). This gives considerable flexibility

17

to our hypotheses as it allows us to include both deterministic and stochastic
computable processes.

This is perhaps best explained by example. Consider again the situation
where we have a single possibly biased coin. If the coin was in fact unbiased the
correct hypothesis would be represented by the measure µ(x) = 2−|x| where x
is the data string. This would give equal probability to each string of a given
length and thus gives us the correct probability of any observed data string
occurring. Clearly this hypothesis is stochastic.

Now consider another hypothesis. If our coin always lands H on even throws
and T on odd throws, the correct hypotheses would be represented by the mea-
sure

µ(x1x2...xn) =





1 if xi = H ∀ even i
and xi = T ∀ odd i,

0 otherwise.

Thus only strings which consist of alternate H’s and T ’s in even and odd
positions respectively have nonzero probability. Obviously then, this hypothesis
describes a system that is completely deterministic. In both of these examples,
the function µ is clearly computable.

In more realistic induction problems the measure representing the correct
hypothesis would be considerably more complex and the data strings would
most likely contain prior information and experimental setup details. In fact,
we might need to follow some quite complex algorithm that embodies a large
amount of information in order to work out the value of the measure for any par-
ticalar input string x, but nevertheless, the resources we require are in principle
finite and the process well defined — hence the phrase “computable hypothesis”.

Given any particular hypothesis, we can then use it to predict future obser-
vations by simply conditioning the probability. So in the coin example above
with x = x1, x2, . . . xn being the observed coin tosses so far, the probability that
xn+1 = a according to a hypothesis would be

µ(xa|x) =
µ(xa ∩ x)

µ(x)
=

µ(xa)
µ(x)

.

This follows because when viewed as sets, xaAω ⊂ xAω. It is worth noting that
this is only a prediction based on the assumption that the single hypothesis is the
correct one. We now have a flexible all purpose way to represent both our data
and hypotheses. What we need next is a method of estimating which hypotheses
are likely and which are unlikely or even impossible. Bayes’ theorem provides
us with such a method, however it demands that we assign prior probabilities to
each hypothesis. This is where the real innovation in Solomonoff’s technique lies
and we will examine his solution and its consequences in the following section.

Before doing so a quick recap is in order: our perfect induction system
is going to read in an ever increasing string which contains details of various
experiments, their results and other miscellaneous information relevant to the
problem. This information will be used to calculate the probability that the
various computable hypotheses might be the correct one. Bayes’ rule provides
us with the mechanism to do this, however it demands that we assign prior
probabilities to each hypothesis.

18

2.3 Solomonoff’s Universal Prior

What we are after is a distribution over the set of all hypotheses which does
not greatly favour any particular set of hypotheses over any other and thus bias
our induction results. Trivially we can see that the set of hypotheses is infinite
and so simply assigning each hypothesis to have an equal prior probability is
mathematically impossible. Thus necessarily some hypotheses will have higher
prior probabilities than others. Solomonoff’s solution was to devise what could
be considered the natural distribution over the set of computable hypotheses
from the perspective of computability theory.

From the previous section, each hypothesis is represented by an enumerable
semi-measure. From the definition of an enumerable function we know that
each of these enumerable semi-measures has in turn at least one partial recur-
sive function or equivalently a computer which can be used to compute it. Thus
any distribution over the set of computers induces a corresponding distribution
over the set of all acceptable hypotheses. Fortunately, we can determine quite
a natural prior distribution over the set of computers with the aid of our uni-
versal reference computer U because each computer is represented by at least
one program for U and a good uninformative prior distribution over the set
of all programs can simply be generated by using an unbiased dice to produce
successive digits from our alphabet. These random digits can then be fed into
U as a program specifying which computer to emulate. As U is a prefix ma-
chine, U will be able to detect the end of the program automatically and then
execute it. So we are in a sense, picking programs or equivalently hypotheses
at random. Thus we have derived a distribution over the set of permissable
hypotheses form nothing more than a simple uniform distribution over Aω and
basic computability theory.

Let us now formalise these ideas. Let µ be some enumerable semi-measure
representing a hypothesis. The universal prior probability of this hypothesis is
defined to be

PU (µ) ≡
∑

U(p,x)=µ(x)

Q−|p|,

where U(p, x) = µ means that the program p causes U to calculate the enumer-
able semi-measure µ on data x. Q is the number of symbols in our alphabet.

It would appear that our distribution over all permissible hypotheses can
contain no significant information other than that contained in our choice of
universal reference computer U . By the invariance theorem and the so called
”coding theorems” (which have not been presented here) the affect of this choice
is restricted. Another tactic is to use universal computers which are very simple,
and thus contain little information. Discussion of these topics is left for more
advanced texts.

In the above definition of PU we have summed over all programs p which
describe the semi-measure µ. However it is clear that only the shortest program
for will have much affect on PU (x). So we can approximate PU by

P (µ) ≡ Q−H(µ),

where H(µ) is defined to be the length shortest program that computes µ. Vari-
ous results exist in the literature detailing precise bounds on this approximation
which we will not explore.

19

Now consider again the problem of predicting the continuation of the data
sequence. The above prior distribution induces a new distribution over A∗
when we take all the hypotheses into account; we simply take a sum over all
hypotheses of the prior probability of each hypothesis times the probability the
hypothesis gives to the observed data string. Thus we define,

M(x) ≡
∑

µ∈MR

Q−H(µ)µ(x),

where MR is the set of all recursive semi-measures, that is, that the set of all
our computable hypotheses.

Thus our best possible prediction of the continuation of a data string x
taking all possible hypotheses into account is now

M(xa|x) =
M(xa)
M(x)

.

2.4 Dominant Enumerable Semi-Measures

The semi-measure M is actually an example of what we call a dominant enu-
merable semi-measure. This property of being dominant gives M very powerful
properties as a prior distribution. In this section we define and prove the exis-
tence of a general class of dominant enumerable semi-measures and show that
M belongs to this class.

Let M be the class of all enumerable semi-measures over A∗ and let MR be
the class of all recursive semi-measures. Thus we see that MR ⊂M.

Definition 2.4.1 A semi-measure µ ∈ M is dominant over M iff for all ρ ∈
M, there exists c > 0 such that

∀x ∈ A∗ µ(x) ≥ cρ(x).

It is clear from the above definition that a measure which is dominant must
have its probability mass spread very thinly over the space and so in some sense
will contain very little information. Thus it appears reasonable that a dominant
semi-measure might be useful as a non-informative universal prior distribution
for inference purposes.

Before we can prove the enumerability ofM we must first prove the following:

Lemma 2.4.1 The class of enumerable functions of the form A∗ → R+ is
recursively enumerable.

Proof. By lemma 1.6.1 we see that a function is enumerable if and only if it has
a ration valued recursive function approximating it from below. Thus the idea
of this proof it to construct the desired enumeration of all enumerable functions
by creating an enumeration of all rational approximation functions.

Let ψ1, ψ2, . . . be the standard recursive enumeration of all partial recursive
functions of the form A∗ → A∗ and define φi : A∗ × N→ A∗ to be

φi(x, k) ≡ ψi(< x.string(k)) >).

Clearly φ1, φ2, . . . is a recursive enumeration. As < ·, · >, string and each
ψi is partial recursive, each φi will also be partial recursive by the uniform

20

composition property. Because < ·, · > is bijective, the enumeration φ1, φ2, . . .
contains all partial recursive functions of this form.

Now define fi : A∗ × N→ Q to be

fi(x, j) ≡ m

n
,

where ψi(x, j) =< string−1(m), string−1(n) >. By a similar argument to that
used above, we can see that f1, f2, . . . is a recursive enumeration of all partial
recursive functions of this form.

We need each approximation function to be recursive, not just partial re-
cursive. The following algorithm produces the desired sequences of recursive
functions:

Step 1 : Set s := 0, p := 0 and h0
i (x) := −∞ for all x ∈ A∗

Step 2 : Do one step in the calculation of fi(x, p)
Let s := s + 1

Step 3 : If the calculation of fi(x, p) has finished
let p := p + 1
let hs

i (x) := fi(x, p)
otherwise

let hs
i (x) := hs−1

i (x)

Step 4 : Go to step 2

Clearly steps 1, 3 and 4 can be done with finite resources. As step 2 only
carries out one step in the calculation of fi(x, p), this must also be acceptable —
even if the calculation of fi(x, p) is never going to terminate. Thus for each i this
algorithm produces a sequence of rational valued recursive functions h0

i , h
1
i ,

We now modify these functions slightly to form rational approximation func-
tions gk

i : A → Q. Define
gk

i (x) ≡ max
j≤k

hj
i (x).

By lemma 1.6.1 we see that any enumerable function must have a monotoni-
cally increasing rational valued recursive function approximating it from below,
thus the recursive enumeration defined by

gi(x) ≡ lim
k→∞

gk
i (x)

must contain all and only enumerable functions. ¤

It is worth noting that the operation of taking a limit to infinity is nonre-
cursive and so gi isn’t necessarily a partial recursive function. Indeed as we
have seen previously, the set of partial recursive functions is a only subset of
the enumerable functions.

Now that we have created a recursive enumeration of all enumerable func-
tions we can now take this one step further and create a recursive enumeration of
all enumerable semi-measures. Essentially we do this by specifying an algorithm
which changes the enumeration g1, g2, . . . into a new recursive enumeration of
enumerable functions ρ1, ρ2, . . . such a way as to insure that each ρi is a semi-
measure.

21

Lemma 2.4.2 The class of enumerable semi-measures M is recursively enu-
merable.

Proof. Let g1, g2, . . . be the recursive enumeration of all enumerable functions
and gk

1 , gk
2 , . . . the associated rational recursive approximation functions. To

obtain a recursive enumeration of all enumerable semi-measures we apply the
following algorithm to each gi:

Step 1 : Set k := 0 and ρi(x) := 0 for all x ∈ A∗

Step 2 : Set k := k + 1

Step 3 : Compute gk
i (x) for all x ∈ {y ∈ A∗ : |y| ≤ k}

Step 4 : If either gk
i (λ) ≥ 1 or

∃x ∈ {y ∈ A∗ : |y| ≤ k − 1} gk
i (x) ≤ ∑

|a|=1 gk
i (xa)

then stop

Step 5 : Set ρi(x) := gk
i (x) for all x ∈ {y ∈ A∗ : |y| ≤ k}

Step 6 : Go to step 2

Clearly steps 2 and 6 are unambiguous and require only finite resources. A
function which is identically zero is trivially recursive and so step 1 is acceptable.
As the function gk

i is recursive and the set {y ∈ A∗ : |y| ≤ k} finite, steps 3 and 5
are also acceptable. Similarly the sum in step 4 is always finite. Perhaps the key
point to notice about this algorithm is that before we update the approximation
ρi we first check that the new approximation will still be a semi-measure. Thus
at all times ρi is a semi-measure.

Now consider the two possible ways that the algorithm can go: The first
possibility is that gi isn’t a semi-measure. This will at some stage be picked
up in step 4, ending the approximation process. As noted above, ρi will be a
semi-measure when we stop. Indeed, it will even be recursive as we can calculate
its value in finitely many steps.

On the other hand; if the function gi is a semi-measure then we simply con-
tinue to approximate the enumerable semi-measure from below forever. Thus if
gi is a semi-measure, ρi = gi. In particular this means that the new enumer-
ation ρ1, ρ2, . . . will contain all enumerable semi-measures as the enumeration
g1, g2, . . . already contains all enumerable functions and thus all enumerable
semi-measures. ¤

We can now prove the following:

Theorem 2.4.1 There exists dominant semi-measures over M.

Proof. Let ρ1, ρ2, . . . be the recursive enumeration of enumerable semi-measures
in lemma 2.4.2 and let α : N→ R+ be any enumerable function such that

∞∑
n=1

α(n) ≥ 1.

22

Now define ν : A∗ → R+ as

ν(x) ≡
∞∑

n=1

α(n)ρn(x).

Firstly we will establish that ν ∈ M, then we will prove that ν is in fact
dominant over M. As each ρn is a semi-measure it is immediately clear that

ν(λ) =
∞∑

n=1

α(n)ρn(λ) ≤
∞∑

n=1

α(n) ≤ 1,

and for all x ∈ A∗,

ν(x) =
∞∑

n=1

α(n)ρn(x)

≥
∞∑

n=1

α(n)


 ∑

|a|=1

ρn(xa)




=
∑

|a|=1

∞∑
n=1

α(n)ρn(xa)

=
∑

|a|=1

ν(xa).

Thus ν is a semi-measure on A∗.
As each ρn is enumerable, by lemma 1.6.1 there exists a recursive function

ρk
n such that limk→∞ ρk

n(x) = ρn(x) with ρk
n(x) ≤ ρk+1

n (x). Likewise we can
define a recursive function αk(n) as α(n) is also an enumerable function. Now
define

νk(x) ≡
k∑

n=1

αk(n)ρk
n(x).

Immediately we see that νk is increasing in k and limk→∞ νk(x) = ν(x). As
αk, ρk

n and the operation of multiplication and finite summation are recursive,
by the uniform composition property νk is also recursive. Thus by lemma 1.6.1
again, we see that ν is an enumerable function. Hence ν ∈M.

Finally if ρm ∈M then we see that for all x ∈ A∗,

ν(x) =
∞∑

n=1

α(n)ρn(x)

≥ α(m)ρm(x).

Thus ν is dominant over M. ¤

We have now proven the existence of not just one dominant enumerable semi-
measure but of a whole set of such functions. In particular, we are able to choose
any function α satisfying the given constants. As it turns out, all dominant
measures make very good universal prior distributions. Nevertheless, certain

23

dominant measures make more intuitive sense than others; indeed Solomonoff
did not originally approach this from the perspective of dominant measures, but
rather he was looking for a sensible distribution over the set of all computable
hypotheses and in the process he founded algorithmic information theory.

Theorem 2.4.2 M is a dominant enumerable semi-measure.

Proof. From theorem 1.7.4 we know that H is co-enumerable and so it follows
that Q−H is enumerable. As µ is also enumerable, M must be enumerable. Triv-
ially we see that M is also a semi-measure. Because U is a prefix free universal
computer, the set of programs describing the enumerable semi-measures µ ∈ M
must be prefix free. Thus by Kraft’s Inequality (theorem 1.2.1) we see that P
satisfies the conditions on α in theorem 2.4.1 and so M must be a dominate
enumerable semi-measure. ¤

This gives us the following simple result which we will need in the next
section.

Corollary 2.4.1 For any semi-measure µ ∈M,

(ln Q)H(µ) ≥ ln
µ(x)
M(x)

.

Proof. Because M is dominant, for any enumerable semi-measure µ ∈ M it
must be the case that M(x) ≥ Q−H(µ)µ(x). The result then follows. ¤

2.5 Completeness of Solomonoff Induction

At last we are able to prove an important result which shows that the error in
prediction when using M instead of the true recursive prior µ always diminishes
to zero very rapidly irrespective of what the unknown µ might be. To simplify
our analysis let us assume that the data sequence with experimental details,
results etc. has been encoded as a binary sequence, that is, let A = {0, 1}.
Doing so gives an added symmetry to prediction errors in that it makes the error
in probability in predicting the nth digit to be a 0 the same as for predicting a
1. Thus the error in probability in the nth prediction is in both cases simply
represented by

|M(x0|x)− µ(x0|x)|,
where µ is the true recursive prior distribution.

We are not so interested in the error in prediction for any one data sequence
but rather we are more interested in the general behaviour which is expressed
by the average or expected error in the nth prediction taken over the set of all
possible data sequences. For our analysis it will be more convenient to work
with the square error in the nth prediction rather than the absolute error. Hence
we get

Si ≡
∑

|x|=i−1

µ(x)(M(x0|x)− µ(x0|x))2,

which is the expected squared error in the nth prediction.

24

Theorem 2.5.1 Let µ be a recursive measure and M our dominant enumerable
semi-measure. It follows that

∞∑

i=1

Si ≤ ln 2
2

H(µ).

Proof. By the definition of Dn and corollary 2.4.1 we see that for all n ∈ N,

Dn(µ||M) =
∑

|x|=n

µ(x) ln
µ(x)
M(x)

≤ (ln 2)H(µ)
∑

|x|=n

µ(x)

= (ln 2)H(µ).

Because this holds for all n ∈ N, it follows from lemma 1.5.1 that,

∞∑

i=1

Di(µ||M) ≤ (ln 2)H(µ).

Before preceeding further we need to make M into a proper probability
measure. We do this by the method outlined in chapter 2. Let Au = A ∪ {u}
and define a probability measure M′ over A∗u by

M′(x0|x) ≡ M(x0|x)
M′(x1|x) ≡ 1−M(x0|x).

Further, extend the probability measure µ over A∗u by defining µ(x) ≡ 0 for all
x /∈ A∗.

From the definition of Di it now follows that,

∞∑

i=1

Di(µ||M′) ≤
∞∑

i=1

Di(µ||M) ≤ (ln 2)H(µ).

By lemma 1.5.2 we see that,

Di(µ||M′) =
∑

|x|=i−1

µ(x)
∑

|y|=1

µ(xy|x) ln
µ(xy|x)

M′(xy|x)

≥ 2
∑

|x|=i−1

µ(x)(µ(x0|x)−M′(x0|x))2

= 2Si.

Thus we obtain the result;

∞∑

i=1

Si ≤ ln2
2

H(µ).

25

¤

Because the harmonic series
∑

1
n does not converge, while Si on the other

hand does converge by the previous theorem, it follows that the sequence Si

must converge to zero faster than 1
n . In other words; when using our universal

prior M for prediction, the error in the nth prediction goes to zero faster than 1
n

irrespective of what the unknown true prior might be! Thus we have defined a
very powerful system for prediction and inductive inference. It is easy to see that
a similar result to theorem 2.4.1 can be proven for other dominant enumerable
semi-measures. This allows us to prove a similar result to the above theorem
for other dominant enumerable semi-measures, hence the reason for considering
Solomonoff’s induction method to be a special case of a general class of powerful
inductive inference methods which use dominant enumerable priors.

2.6 Properties of Dominant Measures

Unfortunately there is a catch, and a very serious one for anybody wishing to
use Solomonoff’s inductive method in practice. Firstly we need two lemmas.

Lemma 2.6.1 If an enumerable semi-measure is a probability measure then it
is recursive.

Proof. Let µ be an enumerable probability measure. If we can prove that µ is
also co-enumerable then we will have proven that µ is recursive. By lemma 1.6.1
there exists a rational valued recursive function gk(x) increasing in k such that
limk→∞ gk(x) = µ(x) for all x ∈ A∗. Define C(x) ≡ A|x| \ x and

hk(x) ≡
∑

y∈C(x)

gk(y)− 1.

Clearly hk is a rational valued recursive function and is increasing in k. Because
the set C(x)∪ x = A|x| partitions the space Aω and µ is a probability measure,
it follows that

lim
k→∞

hk(x) =
∑

y∈C(x)

lim
k→∞

gk(y)− 1

=
∑

y∈C(x)

µ(y)− 1

= (1− µ(x))− 1
= −µ(x).

Thus by lemma 1.6.1 we see that −µ is enumerable; that is, µ is co-enumerable.
As it is both enumerable and co-enumerable it must be recursive. ¤

Lemma 2.6.2 The class MR has no dominant semi-measure.

Proof. To appear. . . ¤

Now we can prove the desired (?!) result:

26

Theorem 2.6.1 A measure dominant over M cannot be a probability measure
or recursive.

Proof. Let ν be a semi-measure which is dominant over M. Clearly ν cannot
be recursive because this would make ν dominant over MR contradicting the
previous lemma. As ν is an enumerable semi-measure and not recursive, ν isn’t
a probability measure by lemma 2.6.1. ¤

This result appears to be fatal to any hopes of building a Bayesian inductive
inference system which employs a dominant distribution as a prior; firstly any
such distribution would not be a probability measure and secondly we wouldn’t
be able to compute the distribution anyway! Thus it is clear that any such
induction system could not itself be of any direct practical use. However, in-
ductive inference principles such as Occam’s razor, the maximum likelihood
principle and the minimum description length principle can all be seen as com-
putable approximations to Solomonoff’s perfect but uncomputable inductive
inference method. Hence the theoretical interest in inference methods such
as Solomonoff’s is well justified, even if it is only to aid those pursuing more
effective computable approximations for practical purposes and for providing
a unifying perspective on the many diverse principles and techniques used in
inductive inference.

27

References

[1] Cristian S. Calude. Information and Randomness: an algorithmic perspec-
tive. Springer-Verlag, 1994.

[2] Ming Li and Paul M. B. Vitányi. Inductive Reasoning and Kolmogorov
Complexity. Journal of Computer and System Sciences, 44:343-384, 1992.

[3] Ming Li and Paul M. B. Vitányi. An Introduction to Kolmogorov Complex-
ity and its Applications. Springer-Verlag, 1997.

[4] Ray J. Solomonoff. A formal theory of inductive inference, Part 1 and Part
2, Inform. and Control 7:1-22 and 224-254, 1964.

[5] Ray J. Solomonoff. Complexity-based induction systems: comparisons and
convergence theorems, IEEE Trans. IT-24:422-432, 1978.

[6] A. K. Zvonkin and Leonid A. Levin. The complexity of finite objects and
the development of the concepts of information and randomness by means
of the theory of algorithms, Russian Math. Survey. 25(6):83-124, 1970.

28

