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ABSTRACT
A commonly experienced problem with population based
optimisation methods is the gradual decline in population
diversity that tends to occur over time. This can slow a
system’s progress or even halt it completely if the popula-
tion converges on a local optimum from which it cannot es-
cape. In this paper we present the Fitness Uniform Deletion
Scheme (FUDS), a simple but somewhat unconventional ap-
proach to this problem. Under FUDS the deletion operation
is modified to only delete those individuals which are “com-
mon” in the sense that there exist many other individuals of
similar fitness in the population. This makes it impossible
for the population to collapse to a collection of highly related
individuals with similar fitness. Our experimental results on
a range of optimisation problems confirm this, in particular
for deceptive optimisation problems the performance is sig-
nificantly more robust to variation in the selection intensity.

Categories and Subject Descriptors
I.2.M [Artificial Intelligence]: Miscellaneous

General Terms
Algorithms, Experimentation

Keywords
Genetic algorithms, population diversity

1. INTRODUCTION
Population based optimisation methods often suffer from

diversity problems, especially after many generations. In the
worst case the whole population can become confined to a
local optimum from which it cannot escape, leaving the op-
timiser stuck. In situations where the population size must
be kept small due to resource constraints, or the solution
space is deceptive with many large local optima, the loss of
population diversity becomes especially significant.
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Numerous techniques have been devised to help preserve
population diversity. Significant contributions in this direc-
tion are fitness sharing [8], crowding [14], local mating [4]
and niching [18]. Many of these methods are based on some
kind of distance measure on the solution space which is used
to ensure that the members of the population do not become
too similar to each other. Unfortunately, for many interest-
ing optimisation problems, such as evolving neural networks
or genetic programming, just trying to establish whether two
individuals are effectively the same can be very difficult as
totally different neural networks or programs (genotype) can
have identical behaviour (phenotype). In the most general
case when the solution space is Turing complete this com-
parison is impossible even in theory.
While most methods try to measure diversity directly in

genotype space, an alternative approach is to measure di-
versity in phenotype space. An example of this approach
is the Fitness Uniform Selection Scheme (FUSS) which was
theoretically analysed in [11] and then experimentally in-
vestigated in [16]. FUSS works by focusing the selection
intensity on individuals which have uncommon fitness val-
ues rather than on those with highest fitness as is usually
done. In this way a broad range of individuals with many
different levels of fitness develop in the population includ-
ing, hopefully, some individuals of high fitness. While FUSS
achieved some interesting results, in particular on highly de-
ceptive problems, it also had difficulties in some situations.
By focusing selection on rare individuals within the popu-
lation there was a tendency for these individuals to fill the
population with highly related offspring [16].
Here we take the idea of using fitness to roughly approxi-

mate the similarity of individuals but apply it in a different
way. Rather than using it to control selection for repro-
duction, as FUSS does, we instead use it to control selec-
tion for deletion, hence the name Fitness Uniform Deletion
Scheme or FUDS. The result is an easily implemented, com-
putationally efficient and problem independent approach to
population diversity control.
In Section 2 we describe the intuition behind FUDS and

its essential properties. Section 3 details the test system
and how the tests were performed. In Section 4 we compare
FUDS to random deletion on a deceptive 2D optimisation
problem. Section 5 examines the performance of FUDS and
random deletion for random travelling salesman problems
with various selection intensities and population sizes. Sec-
tion 6 repeats this comparison for a set covering problem.
Section 7 looks at CNF3 SAT problems and includes an anal-
ysis of population diversity using hamming distance. Finally
Section 8 contains a brief summary and possible future work.



2. FITNESS UNIFORM DELETION
The intuition behind FUDS is very simple: If an individ-

ual has a fitness value which is very rare in the population
then this individual almost certainly contains unique infor-
mation which, if it were to be deleted, would decrease the
total population diversity. Conversely, if a large subset of
individuals in the population all have the same fitness then
we may delete from this set without losing much population
diversity. Presumably these individuals are common in some
sense and likely exist in parts of the solution space which are
easy to reach.

From this simple observation FUDS immediately follows:
Only delete individuals which have very commonly occurring
fitness. This should help preserve population diversity, even
for the most deceptive problems. Indeed it is now simply
impossible for the whole population to collapse to a collec-
tion of highly related individuals with similar fitness. The
technique is simple to understand, easy to implement, com-
putationally efficient and completely independent of both
the problem and of the genotype representation being used.

We implement FUDS as follows. Let fmin and fmax be the
minimum and maximum fitness values possible for a prob-
lem, or at least reasonable upper and lower bounds. We
divide the interval [fmin, fmax] into a collection of subin-
tervals of equal length {[fmin, fmin + ε), [fmin + ε, fmin +
2ε), . . . , [fmax−ε, fmax]}. We call these intervals fitness lev-
els. As individuals are added to the population their fitness
is computed and they are placed in the list of individuals
corresponding to the fitness level they belong to. Thus the
number of individuals in each fitness level describes how
common fitness values within this interval are in the cur-
rent population. When a deletion is required the algorithm
locates the fitness level with the largest number of individu-
als and then randomly selects an individual that belongs to
this level for deletion. In the case of multiple fitness levels
having the same size, the lowest fitness level is chosen.

If the number of fitness levels is chosen too low relative to
the population size, for example 5 fitness levels with a pop-
ulation of 500, then the resulting model of the distribution
of individuals across the fitness range will be too coarse. Al-
ternatively, if a large number of fitness levels is used with a
very small population the individuals may become too thinly
spread across the fitness levels. While in these extreme cases
this could effect the performance of FUDS, in practice we
have found that the system is not particularly sensitive to
the setting of this parameter. If n is the population size
then setting the number of fitness levels to be

√
n is a good

rule of thumb. Generally, so long as the population size is
in the range of 2 to 50 times the number of fitness levels
performance is unaffected. A theoretically better justified
solution would be to model the population distribution us-
ing (in)finite Bayesian trees [12].

Under FUDS the takeover of the highest fitness level, or
indeed any fitness level, is impossible. This is easy to see
because as soon as any fitness level starts to dominate, all
of the deletions become focused on this level until it is no
longer the most populated fitness level. As a by-product,
this also means that individuals on relatively unpopulated
fitness levels are preserved. This allows the steady creation
of individuals on many different fitness levels and makes it
relatively easy for the EA to find its way out of local optima
as it keeps on exploring evolutionary paths which do not at
first appear to be promising.

Figure 1: This illustrates the density of individuals
over a fitness landscape with FUDS. The numbers
represent the fitness of the different regions and the
shading represents the density of individuals over
the space.

It is instructive to consider how individuals are distributed
in the genome space when using FUDS. If we consider a dis-
tance semi-metric between individuals d(i, j) := |f(i)−f(j)|
where f is the fitness function, then clearly FUDS attempts
to uniformly distribute the individuals according to this met-
ric. However this does not imply that the individuals are
uniformly distributed across the genome space. Typically,
areas of high fitness are relatively small compared to areas
of lower fitness. In this case, if we have the same number
of individuals in both regions then the density of individu-
als in the high fitness region will be much higher due to its
smaller size. We illustrate this visually on a fitness landscape
in Figure 1. The numbers indicate the fitness of individuals
in each region, while the density of individuals is given by
how dark the regions are shaded.
Clearly then, uniformity in the fitness distance metric d

does have some implications for the distribution of individ-
uals with respect to a metric g on the genome space. This
allows us to relate FUDS to other methods of diversity con-
trol that require a genome space metric. We say that a fit-
ness function f is smooth with respect to g, if g(i, j) being
small implies that |f(i) − f(j)| is also small, that is, d(i, j)
is small. This implies that if d(i, j) is not small, g(i, j) also
cannot be small. Thus, if we limit the number of d simi-
lar individuals, as we do in FUDS, this will also limit the
number of g similar individuals, as is done in crowding and
niching methods. The advantage of FUDS is that we do not
need to know what g is, or to compute its value, something
that can be very difficult in some applications. Indeed, the
above argument is true for any metric g on the genome space
that f is smooth with respect to. On the other hand, if the
fitness function f is not smooth with respect to g, then this
argument cannot be made. However, in this case the opti-
misation problem is difficult as small mutations in genome
space with respect to g will produce unpredictable changes
in fitness.
Because FUDS is only a deletion scheme, we still need

to choose a selection scheme which may require us to set
a selection intensity parameter. With FUDS however, the
performance of the system is less sensitive to the correct
setting of this parameter. If the selection intensity is set too
high the normal problem is that the population rushes into



a local optima too soon and becomes stuck before it has had
a chance to properly explore the genotype space for other
promising regions. However, with FUDS a total collapse
in population diversity is impossible and thus much higher
levels of selection intensity may be used.
Conversely, if the selection intensity is too low, the pop-

ulation tends not to explore the higher areas of the fitness
landscape at all. Consider a population which contains 1,000
individuals. Under random deletion all of these individuals,
including the highly fit ones, will have a 1 in 1,000 chance
of being deleted in each cycle and so the expected life time
of an individual is 1,000 deletion cycles. Thus if a highly
fit individual is to contribute a child of the same fitness
or higher, it must do so reasonably quickly. However for
some optimisation problems the probability of a fit individ-
ual having such a child when it is selected is very low, so
low in fact that it is more likely to be deleted before this
happens. As a result the population becomes stuck, unable
to find individuals of greater fitness before the fittest indi-
viduals are killed off. With FUDS, as rare fit individuals
are not deleted, we can use much lower selection intensity
without the population becoming stuck.

3. FUDS TEST SYSTEM
In order to test FUDS we have implemented a simple pop-

ulation based optimiser in Java on a PC running Linux. The
full source code for this along with usage instructions, ex-
ample optimisation problems and test data sets is available
from[15]. This zip file also contains directions on where to
download the full datasets that were used to produce the
results presented in this paper.
Our optimiser uses a “steady state” population rather

than the more usual “generational” population. With a
steady state population individuals are selected and acted
upon one at a time rather than in bulk as under the genera-
tional approach. Specifically the following occurs: An indi-
vidual is first selected according to some selection scheme,
then according to the crossover probability a second individ-
ual may be selected and the two are crossed to form a child.
Then according to the mutate probability a mutation opera-
tion may be applied to the child. When a crossover does not
occur a mutation always takes place in order to reduce the
probability of a clone of an existing individual being added
to the population. Finally the deletion scheme selects which
individual from the population the new child will replace.
For the selection scheme we implemented the commonly

used tournament selection. Under tournament selection a
group of individuals is randomly chosen from the population,
then the individual with the highest fitness in this set is
returned. The size of the group is called the tournament size
and it is clear that the larger this group is the more likely we
are to select a highly fit individual from the population. In
our tests we have used tournament sizes ranging from 2 to
12 in order to examine a wide range of selection intensities.
We consider tournament selection to be roughly represen-

tative of other standard selection schemes which favour the
fitter individuals in the population; indeed for tournament
size 2 it can be shown that tournament selection is equiv-
alent to the linear ranking selection scheme [10, Sec.2.2.4].
For other standard selection schemes we expect the perfor-
mance of these schemes to be at best comparable to tour-
nament selection when used with a correctly tuned selection
intensity.

Good values for the crossover and mutate probabilities
depend on the problem and must be manually tuned based
on experience as there are few theoretical guidelines on how
to do this. For some problems performance can be quite
sensitive to these values while in others their values do not
make much difference. Our default values are 0.5 for both
which has often provided us with reasonable performance.
With steady state optimisers the standard deletion scheme

used is simply random deletion. The rational for this is that
it is neutral in the sense that it does not skew the distribu-
tion of the population in any way. Thus whether the popula-
tion tends toward high or low fitness etc. is solely a function
of the selection scheme and its parameters, in particular the
selection intensity. Of course random deletion makes no ef-
fort to preserve diversity in the population as all individuals
have an equal chance of being removed. Essentially our ob-
jective in this paper is to investigate whether FUDS might
be a better alternative and under which circumstances.
When reporting test results we will adopt the following

notation: TOUR2 means tournament selection with a tour-
nament size of 2. Similarly for TOUR3, TOUR4 and so on.
When a graph shows the performance of tournament selec-
tion over a range of tournament sizes we will simply write
TOURx. To indicate the deletion scheme used, we will add
either the suffix -R or -F to indicate random deletion or
FUDS respectively. Thus, TOUR10-R is tournament selec-
tion with a tournament size of 10 used with random deletion.
For each problem we run the system using tournament

selection with the same tournament sizes, the same muta-
tion and crossover rates and the same population size. The
only difference is which deletion scheme is used by the code.
Thus even if our parameters, mutation operators etc. are
not optimal for a given problem, the comparison between
the two deletion schemes is still fair. Indeed we will often
be deliberately setting the optimisation parameters to non-
optimal values in order to compare the robustness of the
system when using the different deletion schemes.
As a steady state optimiser operates on just one individ-

ual at a time, the number of cycles within a given run can
be high, perhaps 100,000 or more. In order to make our
results more comparable to a generational optimiser we di-
vide this number by the size of the population to give the
approximate number of generations. Unfortunately the the-
oretical understanding of the relationship between steady
state and generation optimisers is not strong. It has been
shown that under the assumption of no crossover the effec-
tive selection intensity using tournament selection with size
2 is approximately twice as strong under a steady state GA
as it is with a generational GA [20]. As far as we are aware a
similar comparison for systems with crossover has not been
performed, though we would not expect the results to be
significantly different.
In each run of the system we stopped the optimiser after

no progress had been recorded for 20 generations. Running
the system longer and looking at the graphs it seems that 20
generations is sufficient to identify when the system becomes
stuck and further progress is unlikely. In order to generate
reliable statistics we ran each test multiple times; typically
50 times. From these runs we then calculated the average
performance for each selection scheme. We also computed
the sample standard deviation and from this the standard
error in our estimate of the mean. This value was then used
to generate 95% confidence intervals which appear as error
bars on the graphs.
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Figure 2: Switching from random deletion (left
graph) to FUDS (right graph) the number of gener-
ations required to find the global optimum falls dra-
matically, especially when higher selection intensity
is used.

4. A DECEPTIVE 2D PROBLEM
The first problem we examine is the highly deceptive 2D

optimisation problem previously analysed for FUSS in [11].
The space of individuals is the unit square [0, 1] × [0, 1].
On this space narrow regions I1 := [a, a + δ] × [0, 1] and
I2 := [0, 1] × [b, b + δ] for some a, b, δ ∈ [0, 1] are defined.
Typically δ is chosen so that it is much smaller than 1 and
thus I1 and I2 do not occupy much of the domain space.
The fitness function is defined by the equation,

f(x, y) =











1 if (x, y) ∈ I1\I2,
2 if (x, y) ∈ I2\I1,
3 if (x, y) 6∈ I1 ∪ I2,

4 if (x, y) ∈ I1 ∩ I2.
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For this problem we set up the mutation operator to ran-
domly replace either the x or y position of an individual and
the crossover to take the x position from one individual and
the y position from another to produce an offspring. The
size of the domain for which the function is maximised is just
δ2 which is very small for small values of δ, while the local
maxima at fitness level 3 covers most of the space. Clearly
the only way to reach the global maximum is by leaving this
local maxima and exploring the space of individuals with
lower fitness values of 1 or 2. Thus, with respect to the
mutation and crossover operators we have defined, this is a
deceptive optimisation problem as these partitions mislead
the EA (see [6] for a definition of “deceptive”).
For this test we set the maximum population size to 1,000

and made 20 runs for each δ value. With a steady state EA
it is usual to start with a full population of random individ-
uals. However for this particular problem we reduced the
initial population size down to just 10 in order to avoid the
effect of doing a large random search when we created the
initial population and thereby distorting the scaling. Usu-
ally this might create difficulties due to the poor genetic
diversity in the initial population. However due to the fact
that any individual can mutate to any other in just two steps
this is not a problem in this situation. Initial tests indicated
that reducing the crossover probability from 0.5 to 0.25 im-
proved the performance slightly and so we have used the
latter value.
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Figure 3: TOUR3-R converged too slowly while
TOUR12-R converged prematurely and became
stuck. TOUR6-R appears to be about the correct
tournament size for this problem. With FUDS all
of the selection schemes performed well.

The first set of results for the selection schemes used with
random deletion appear in the left graph of Figure 2. As
expected higher selection intensity is a significant disadvan-
tage for this problem. Indeed even with just a tournament
size of 3 the number of generations required to find the max-
imum became infeasible to compute for smaller values of δ.
Be aware that this is a log-log scaled graph and so the dif-
ferent slopes indicate significantly different orders of scaling.
In the second set of tests we switch from random deletion to
FUDS. These results appear in the right graph of Figure 2.
We see that with FUDS as the deletion scheme the scaling
improves dramatically for RAND, TOUR2 and TOUR3.
Although this problem was artificially constructed, the re-

sults clearly demonstrate how for some very deceptive prob-
lems much higher levels of selection intensity can be applied
when using FUDS.

5. TRAVELLING SALESMAN PROBLEM
A well known optimisation problem is the so called Trav-

elling Salesman Problem (TSP). The task is to find the
shortest Hamiltonian cycle (path) in a graph of N vertexes
(cities) connected by edges of certain lengths. There ex-
ist highly specialised population based optimisers which use
advanced mutation and crossover operators and are capable
of finding paths less than one percent longer than the op-
timal path for up to 107 cities [17, 19, 13, 1]. As our goal
is only to study the relative performance of selection and
deletion schemes, having a highly refined implementation is
not important. Thus the mutation and crossover operators
we used were quite simple: Mutation was achieved by just
switching the position of two of the cities in the solution,
while for crossover we used the partial mapped crossover
technique [7]. Fitness was computed by taking the recipro-
cal of the tour length.
We have used randomly generated TSP problems, that is,

the distance between any two cities was chosen uniformly
from the unit interval [0, 1]. We chose this as it is known to
be a particularly deceptive form of the TSP problem as the
usual triangle inequality relation does not hold in general.
For example, the distance between cities A and B might be
0.1, between cities B and C 0.2, and yet the distance be-
tween A and C might be 0.8. The problem still has some
structure though as efficient partial solutions tend to be use-
ful building blocks for efficient complete tours.
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Figure 4: In every situation FUDS was superior to random deletion. The performance with FUDS was also
much more stable under variation in the selection intensity.

For this test we used random distance TSP problems with
20 cities and a population size of 1000. We found that chang-
ing the crossover and mutation probabilities did not improve
performance and so these have been left at their default val-
ues of 0.5. Our stopping criteria was simply to let the GA
run for 300 generations as this appeared to be adequate for
all of the methods to converge and allowed us to easily graph
performance versus generations in a consistent way for each
combination of selection and deletion scheme.

The first graph in Figure 3 shows each of the selection
schemes used with random deletion. We see that TOUR3-R
has insufficient selection intensity for adequate convergence
while TOUR12-R quickly converges to a local optimum and
then becomes stuck. TOUR6-R has about the correct level
of selection intensity for this problem and population size.

The second graph in Figure 3 shows the same set of selec-
tion schemes but now using FUDS as the deletion scheme.
With FUDS the performance for all tournament sizes either
stayed the same or improved. In the case of TOUR3 the im-
provement was dramatic and for TOUR12 the improvement
was also significant. This is interesting because it shows
that with FUDS performance can improve when the selec-
tion intensity is either too high or too low making the GA
more robust. With TOUR3-R the selection intensity is low
and thus we would expect the population diversity to re-
main relatively strong. Thus the fact that TOUR3-F was
so much better than TOUR3-R shows that FUDS can have
performance benefits due to not deleting rare fit individuals,
as was predicted earlier in Section 2.

Investigating further it seems that this effect is due to
the way that FUDS focuses the deletion on the large mass
of individuals which have an average level of fitness while
completely leaving the less common fit individuals alone.
This helps a system with very weak selection intensity move
the mass of the population up through the fitness space.
With higher selection intensity this problem tends not to
occur as individuals in this central mass are less likely to be
selected thus reducing the rate at which new individuals of
average fitness are added to the population.

In order to better understand how stable FUDS perfor-
mance is when used with different selection intensities we
ran another set of tests on random TSP problems with 20
cities and graphed how performance varied by tournament
size. For these tests we set the GA to stop each run when
no improvement had occurred in 40 generations. We also
tested on a range of population sizes: 250, 500, 1000 and
5000. The results appear in Figure 4.

In these graphs we can now clearly see how the perfor-
mance of TOURx-R varies significantly with tournament
size. Below the optimal tournament size performance de-
clined quickly while above this value it also declined, though
more slowly. Interestingly, with a population size of 5000 the
optimal tournament size was about 6 while with small pop-
ulations this value fell to just 4. Presumably this was partly
because smaller populations have lower diversity and thus
cannot withstand as much selection intensity. In contrast,
for every combination of tournament size and population
size the result with FUDS was optimal. Indeed, even with
an optimally tuned tournament size FUDS still improved
performance.
More tests were run exploring performance with up to

100 cities. Although the performance of FUDS remained
much stronger than random deletion for very low selection
intensity, for high selection intensity the two were equal. We
believe that the reason for this is the following: When the
space of potential solutions is very large, finding anything
close to a global optimum is practically impossible; indeed it
is difficult to even find the top of a reasonable local optimum
as the space has so many dimensions. In these situations it
is more important to put effort into simply climbing in the
space rather than spreading out and trying to thoroughly
explore. Thus higher selection intensity can be an advantage
for large problem spaces. At any rate, for large problems
and with high selection intensity FUDS did not hinder the
performance, while with low selection intensity it continued
to significantly improve it.

6. SET COVERING PROBLEM
The set covering problem (SCP) is a reasonably well known

NP-complete optimisation problem with many real world
applications. Let M ∈ {0, 1}m×n be a binary valued matrix
and let cj > 0 for j ∈ {1, . . . n} be the cost of column j. The
goal is to find a subset of the columns such that the cost is
minimised. Define xj = 1 if column j is in our solution and
0 otherwise. The solution cost is then

∑n

j=1
cjxj subject to

the condition that
∑n

j=1
mijxj ≥ 1 for i ∈ {1, . . .m}.

Our system of representation, mutation operators and
crossover follow that used by Beasley [3] and we compute
the fitness by taking the reciprocal of the cost. The results
presented here are based on the “scp42” problem from a
standard collection of SCP problems [2]. The results ob-
tained on other problems in this test set were similar. We
found that increasing the crossover probability and reducing
the mutation probability improved performance, especially
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Figure 5: FUDS produced superior results to random deletion in all situations tested, including when the
tournament size was optimally tuned.

when the selection intensity was low. Thus we have tested
the system with a crossover probability of 0.8 and a mu-
tation probability of 0.2. We performed each test at least
50 times in order to minimise the error bars. Our stopping
criteria was to terminate each run after no progress had oc-
curred for 40 generations. The results for this test appear
in Figure 5.
Similar to the TSP graphs we again see the importance

of correctly tuning the tournament size with TOURx-R. We
also see the optimal range of performance for TOURx-R
moving to the right as the population sizes increases. This
is what we would expect due to the greater diversity in larger
populations being able to support more selection intensity.
This kind of variability is one of the reasons why the se-
lection intensity parameter usually has to be determined by
experimentation.
With FUDS the results were again very impressive. As

with the TSP tests; for all combinations of tournament size
and population size that we tested, the performance with
FUDS was superior to the corresponding performance with
random deletion. This was true even when the tourna-
ment size was not set optimally. While the performance
of TOURx-F did vary with different tournament sizes, the
results were more robust than TOURx-R, especially with
larger populations. Indeed for the larger two populations
we again have a situation where the worst performance of
TOURx-F is equal to the best performance of TOURx-R.

7. MAXIMUM CNF3 SAT
Maximum CNF3 SAT is a well known NP hard optimisa-

tion problem [5] that has been extensively studied. A three
literal conjunctive normal form (CNF) logical equation is
a boolean equation that consists of a conjunction of clauses
where each clause contains a disjunction of three literals. So
for example, (a∨ b∨¬c)∧ (a∨¬e∨f) is a CNF3 expression.
The goal in the maximum CNF3 SAT problem is to find an
instantiation of the variables such that the maximum num-
ber of clauses evaluate to true. Thus for the above equation
if a = F , b = T , c = T , e = T , and f = F then just one
clause evaluates to true and thus this instantiation gets a
score of one. Achieving significant results in this area would
be difficult and this is not our aim; we are simply using this
problem as a test to compare deletion schemes.
Our test problems have been taken from the SATLIB col-

lection of SAT benchmark tests [9]. The first test was per-
formed on the full set of 100 instances of randomly gener-
ated CNF3 formula with 150 variables and 645 clauses, all of

which are known to be satisfiable. Based on test results the
crossover and mutation probabilities were left at the default
values. Our mutation operator simply flips one boolean vari-
able and the crossover operator forms a new individual by
randomly selecting for each variable which parent’s state to
take. Fitness was simply taken to be the number of clauses
satisfied. As in previous sections we tested across a range of
tournament sizes and population sizes. The results of these
tests appear in Figure 6.

We have shown only the population sizes of 500 and 5,000
as the other population sizes tested followed the same pat-
tern. Interestingly, for this problem there was no evidence
of better performance with FUDS at higher selection inten-
sities. Nor for that matter was there the decline in perfor-
mance with TOURx-R that we have seen elsewhere. Indeed
with random deletion the selection intensity appeared to
have no impact on performance at all. While SAT3 CNF is
an NP hard optimisation problem, this lack of dependence
of our selection intensity parameter suggests that it may not
have the deceptive structure that FUDS was designed for.

With low selection intensity FUDS caused performance to
fall below that of random deletion; something that we have
not seen before. Because the advantages of FUDS have been
more apparent with low populations in other test problems,
we also tested the system with a population size of only
150. Unfortunately no interesting changes in behaviour were
observed.

We suspected that the uniform nature of the population
distribution that should occur with FUDS might be to blame
as we only expect this to be a benefit for very deceptive
problems which are sensitive to the tuning of the selection
intensity parameter. Thus we ran the EA with a population
of 1000 and graphed the population distribution across the
number of clauses satisfied at the end of the run. We stopped
each run when the EA made no progress in 40 generations.
The results of this appear in Figure 7.

The first thing to note is that with TOUR4-R the popula-
tion collapses to a narrow band of fitness levels, as expected.
With TOUR4-F the distribution is now uniform, though
practically none of the population satisfies fewer than 550
clauses. The reason for this is quite simple: While FUDS
levels the population distribution out, TOUR4 tends to se-
lect the most fit individuals and thus pushes the population
to the right from its starting point.

Given that our goal is to find an instantiation that sat-
isfies all 645 clauses, it is questionable whether having a
large percentage of the population unable to satisfy even
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Figure 6: With low selection intensity TOURx-F
performed slightly below TOURx-R, but was other-
wise comparable.

600 clauses is of much benefit. While the total population
diversity under FUDS might be very high, perhaps the kind
of diversity that matters the most is the diversity among
the relatively fit individuals in the population. This should
be true for all but the most deceptive problems. By thinly
spreading the population across a very wide range of fitness
levels we actually end up with very few individuals with the
kind of diversity that matters. Of course this depends on
the nature of the problem we are trying to solve and the
fitness function that we use.
With CNF3 SAT problems we can directly measure pop-

ulation diversity by taking the average hamming distance
between individuals’ genomes. While this means that the
value of the fitness based similarity metric is questionable
for this problem, as more direct methods can be applied,
it is a useful situation for our analysis as it allows us to
directly measure how effective FUDS is at preserving pop-
ulation diversity. The hope of course is that any positive
benefits that we have seen here will also carry over to prob-
lems where directly measuring the diversity is much more
difficult.
For the diversity tests we used a population size of 1000

again. For comparison we used TOUR3 and TOUR12 both
with random deletion and with FUDS. In each run we calcu-
lated two different statistics: The average hamming distance
between individuals in the whole population, and the aver-
age hamming distance between individuals whose fitness was
no more than 20 below the fittest individual in the popula-
tion at the time. These two measurements give us the “total
population diversity” and “top fitness diversity” graphs in
Figure 8.
We graphed these measurements against the number of

clauses satisfied by the fittest individual rather than the
number of generations. This is only fair because if good so-
lutions are found very quickly then an equally rapid decline
in diversity is acceptable and to be expected. Indeed it is
trivial to come up with a system which always maintains
high population diversity however long it runs, but is un-
likely to find any good solutions. The results were averaged
over all 100 problems in the test set. Because the best so-
lution found in each run varied, we have only graphed each
curve until the point where fewer than 50% of the runs were
able to achieve this level of fitness. Thus the terminal point
at the right of each curve is representative of fairly typical
runs rather than just a few exceptional ones that perhaps
found unusually good solutions by chance.
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Figure 7: With TOUR4-R the population col-
lapses to a narrow band of fitness levels while with
TOUR4-F the distribution is flat.

The left graph in Figure 8 shows the total population
diversity. As expected the diversity with TOUR3-R and
TOUR12-R decline steadily as finding better solutions be-
comes increasingly difficult and the population tends to col-
lapse into a narrow band of fitness. Also the total population
diversity with TOUR3-R is higher than with TOUR12-R
as we would expect. Importantly, FUDS significantly im-
proved the total population diversity with both TOUR3 and
TOUR12 as desired. However because the maximal solution
found by TOUR3-F and TOUR12-F were not better than
TOUR3-R and TOUR12-R this indicates that improved to-
tal population diversity was not a significant factor for this
optimisation problem.
On the right graph we see the diversity among the fit-

ter individuals in the population. TOUR3 has significantly
greater diversity than TOUR12 with both deletion schemes.
This is expected as TOUR3 tends to search more evolution-
ary paths while TOUR12 just rushes down a few. Disap-
pointingly FUDS does not appear to have made very much
difference to the diversity among these highly fit individu-
als, though the curves do appear to flatten out a little as
the diversity drops below 30, so perhaps FUDS is having a
slight impact.
In summary, these results show that while FUDS has been

successful in maximising total population diversity, for prob-
lems such as CNF3 SAT this in itself is not sufficient. It ap-
pears to be more important that the GA maximises the di-
versity among those individuals which have reasonably high
fitness.

8. CONCLUSIONS AND FUTURE WORK
We have used tournament selection to test FUDS against

random deletion on several optimisation problems with dif-
ferent population sizes, mutation probabilities and crossover
probabilities. For the artificial deceptive 2D problem, ran-
dom distance matrix TSP problems and the SCP problem,
FUDS was consistently superior, returning better results
than random deletion for every combination of tournament
size and population size tested. This is particularly signifi-
cant given that FUDS is trivial to implement, computational
cheap and largely problem independent.
For CNF3 SAT problems however the results were less

impressive. While the performance with FUDS was com-
parable to random deletion for medium to high selection
intensity, it was inferior to random deletion for low selection
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Figure 8: While the total population diversity is im-
proved by FUDS, the diversity among fit individuals
is similar to that with random deletion.

intensities. Investigating further we found that while the
total population diversity was improved, as expected, the
diversity among the fit individuals was not. However, be-
cause the performance of TOURx-R was not reduced with
very high selection intensity, this indicates that CNF3 SAT
problems do not have the kind of diversity problems that
FUDS was designed to overcome. That is, problems with
serious population diversity difficulties where greedy explo-
ration is harshly punished.
In future work FUDS should be tested on more problem

classes with an aim to developing a better understanding of
what kinds of deceptive optimisation problems it is the most
effective.
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