
CDMTCS
Research
Report
Series

Solving Problems with Finite
Test Sets

Cristian S. Calude
Auckland University, New Zealand

Helmut Jürgensen
University of Western Ontario, Canada

Shane Legg
Auckland University, New Zealand

CDMTCS-112
September 1999

Centre for Discrete Mathematics and
Theoretical Computer Science

Solving Problems with Finite Test Sets∗

Cristian S. Calude,† Helmut Jürgensen,‡ Shane Legg§

Abstract

Every finite and every co-finite set of non-negative integers is decidable. This is
true and it is not, depending on whether the set is given constructively. A similar
constraint is applicable in language theory and many other fields. The constraint is
usually understood and, hence, omitted.

The phenomenon of a set being finite, but possibly undecidable, is, of course,
a consequence of allowing non-constructive arguments in proofs. In this note we
discuss a few ramifications of this fact. We start out with showing that every number
theoretic statement that can be expressed in first-order logic can be reduced to a
finite set, to be called a test set. Thus, if one knew the test set, one could determine
the truth of the statement. The crucial point is, of course, that we may not able to
know what the finite test set is. Using problems in the class Π1 of the arithmetic
hierarchy as an example, we establish that the bound on the size of the test set is
Turing-complete and that it is upper-bounded by the busy-beaver function.

This re-enforces the fact that there is a vast difference between finiteness and
constructive finiteness. In the context of the present re-opened discussion about the
notion of computability – possibly extending its realm through new computational
models derived from physics – the constraint of constructivity of the model itself
may add another twist.

1 Introduction

In the early days of decidability theory and also of theoretical computer science it was
not uncommon to find statements like every finite and every co-finite set of non-negative
integers is decidable in the research literature and in textbooks, and to find “proofs” of
this using the argument that a decision algorithm could use table look-up; moreover, such
statements themselves would be used in proofs of the decidability of other problems via
reduction to finite or co-finite sets.1 Of course every finite or co-finite set is decidable, but
only – as is well-known – if it is given constructively. Similar constraints are applicable in

∗The research reported in this paper was partially supported by Auckland University, Research Grant
A18/XXXXX/62090/3414050, and by the Natural Sciences and Engineering Council of Canada, Grant
OGP0000243.
†Department of Computer Science, The University of Auckland, Private Bag 92019, Auckland, New

Zealand; e-mail: cristian@cs.auckland.ac.nz.
‡Department of Computer Science, The University of Western Ontario, London, Ontario, Canada

N6A 5B7, and Institut für Informatik, Universiät Potsdam, Am Neuen Palais 10, D-14469, Potsdam,
Germany; e-mail: helmut@uwo.ca.
§Department of Mathematics, The University of Auckland, Private Bag 92019, Auckland, New

Zealand.
1We refrain from giving references, because pointing to past mistakes is not the aim of this paper.

However, the interested reader is likely to find such statements by just perusing a few older books.

language theory and many other fields. The constraint is, of course, usually understood
and, hence, omitted. The phenomenon of a set being finite, but possibly undecidable,
is, of course, a consequence of allowing non-constructive arguments in proofs. In this
note we discuss a few ramifications of this fact. We start out with showing that every
number theoretic statement that can be expressed in first-order logic can be reduced to
a finite set, to be called a test set. Thus, if one knew the test set, one could determine
the truth of the statement. This rather simple result models what is sometimes referred
to as experimental mathematics: Simply stated, if the statement is true we don’t need
to do anything and if it is false we find the smallest counter-example by computer. We
then show how several classical problems fall into this category. The crucial point is, of
course, that we may not be able to know what the finite test set is. Using problems in the
class Π1 of the arithmetic hierarchy as an example, we establish that the bound on the
size of the test set is Turing-complete and that it is upper-bounded by the busy-beaver
function.

This re-enforces the fact that there is a vast difference between finiteness and con-
structive finiteness. In the context of the present re-opened discussion about the notion
of computability – possibly extending its realm through new computational models de-
rived from physics – the constraint of constructivity of the model itself may add another
twist.

Let N denote the set of positive integers, let N 0 = N ∪{0}, and, for k ∈ N , consider a
k-ary predicate P on N , that is, a mapping of N k into the set B = {0, 1} of truth values.
Consider the formula

f = Q1n1 Q2n2 . . . Qknk P (n1, n2, . . . , nk)

where Q1, Q2, . . . , Qk ∈ {∀,∃} are quantifier symbols. In analogy to the arithmetic
classes, we say that f is in the class Π̂s or Σ̂s if the quantifier prefix of f starts with
∀ or ∃, respectively, and contains s − 1 alternations of quantifier symbols. When P is
computable, then f is in Πs or Σs, respectively.2 It is sufficient to consider only such
formulæ f in which no two consecutive quantifier symbols are the same; in the sequel we
make this assumption without special mention. With f as above, one has s = k.

As usual in logic, we write P (n1, . . . , nk) instead of P (n1, . . . , nk) = 1 when n1, . . . , nk
are elements of N . Thus, ¬P (n1, . . . , nk) if and only if P (n1, . . . , nk) = 0. Moreover, since
we consider variable symbols only in the domain N , if f is any formula in first-order logic,
we write f is true instead of f is true in N .

Let Γs be one of the classes Π̂s, Σ̂s, Πs, and Σs. We refer to the task of proving or
refuting a first-order logic formula as a problem and especially, to problems expressed by
formulæ in Γs as Γs-problems.

We say that a problem is being solved if the corresponding formula is proved or
disproved to be true, that is, if the truth value of the formula is determined. A problem
is said to be finitely solvable if it can be solved by examining finitely many cases.3

For example, consider the predicate

P (n) =

{
1, if n is even or n = 1 or n is a prime,
0, otherwise,

2See [32] for general background on arithmetic classes.
3A rigorous definition of this notion is given in Section 3 below.

2

that is, P (n) = 0 if and only if n is an odd number greater than 1 which is not a prime.
Then the problem expressed by the formula ∀n P (n) is finitely solvable;4 indeed, it is
sufficient to check all n up to and including 9.

In this paper, we mainly consider Π̂1-problems and Π1-problems. For example, Gold-
bach’s conjecture is a Π1-problem. It states that every even n ∈ N is the sum of two
primes.5 To express this in the terminology as introduced, let PG : N → B be such that

PG(n) =

{
1, if n is odd or n is the sum of two primes,
0, otherwise.

Thus, fG = ∀n PG(n) is true if and only if Goldbach’s conjecture is true.
Similarly, Riemann’s hypothesis is a Π1 problem.6 Consider the complex function

ζ(s) =
1

1− 21−s
·
∞∑
n=1

(−1)n−1

ns
,

where s = σ + i t, σ, t ∈ R , σ > 0, and s 6= 1. Riemann conjectured that all zeroes
s0 = σ0 + i t0 of ζ satisfy σ0 = 1

2 and are simple [30].
By a result of [14], Riemann’s hypothesis can be expressed in terms of the function

δR : N → R defined by
δR(k) =

∏
n<k

∏
j≤n

ηR(j),

where

ηR(j) =

{
p, if j = pr for some prime p and some r ∈ N ,
1, otherwise.

Riemann’s hypothesis is equivalent with the assertion that(∑
k≤δR(n)

1

k
−
n2

2

)2

< 36n3,

for all n ∈ N , see [14].7 Hence, let

PR(n) =

{
1, if

(∑
k≤δR(n)

1
k −

n2

2

)2
< 36n3,

0, otherwise.

Thus, fR = ∀n PR(n) is true if and only if the Riemann hypothesis is true. Clearly, PR

is decidable. Therefore, Riemann’s hypothesis is a Π1-problem.
As in the case of the Goldbach conjecture, also for the Riemann hypothesis huge

computations have been performed to search for a counter-example – or to increase the
confidence [3], [4], [5], [6], [25].

4This example is based on a folklore joke on induction proofs: To prove that all odd natural numbers
greater than 2 are primes one proceeds as follows: 3 is a prime; 5 is a prime; 7 is a prime; 9 is a measuring
error; 11 is prime; 13 is a prime; this is enough evidence.

5The conjecture was stated in 1742 by Goldbach in a letter to Euler [17]. According to [22], in 1980
the Goldbach conjecture was known to be true for all n ≤ 108; in [35] of December 1994, it is claimed
that no counter-example exists up to 2 · 1010. Hardy states that the Goldbach problem is “probably as
difficult as any of the unsolved problems in mathematics” [19]. See also [26] and [34].

6The problem is first proposed in [30]; see also [31].
7For another proof see [23], pp. 117–122.

3

Of course, not every mathematical statement is a Π1-problem. For instance, the
conjecture stating the existence of infinitely many twin primes, that is, consecutive odd
primes such as 857 and 859, is not a Π1-problem. With

PT(n,m) =

{
1, m > n and m and m+ 2 are primes,
0, otherwise,

this conjecture can be stated as

fT = ∀n∃mPT(n,m).

The formula fT is in the class Π2. Bennett claims that most mathematical conjectures
can be settled indirectly by proving stronger Π1-problems, see [2]. For the twin-prime
conjecture such a stronger Π1-problem is obtained as follows. Consider the predicate

P ′T(n) =

{
1, if there is m with 10n−1 ≤ m ≤ 10n, m and m+ 2 primes,
0 otherwise.

Let f ′T = ∀nP ′T(n). Thus, f ′T gives rise to a Π1-problem and, if f ′T is true, then also fT

is true.
In this paper we discuss the fact – surprising (only) at first thought – that every

Π̂s-problem and every Σ̂s-problem has a finite test set. Of course, there cannot be a
constructive proof of this statement. Moreover, already for s = 1 the size of the test sets
behaves as badly as the busy beaver.

2 Notation and Basic Notions

In this section we briefly review some basic notions and introduce some notation. LetX
be a non-trivial alphabet, that is, a non-empty, finite set with at least 2 elements. Then
X∗ is the set of all words over X. A (formal) language over X is a subset of X∗.

We assume that the reader is familiar with the theory of computable functions on
integers or strings (see [32, 8]). If U is a universal Turing machine which maps strings
over X to non-negative integers, and π is a program for U then U(π) denotes the result
of applying U to π and an empty input tape. In particular, we write U(π) =∞ when U
does not halt on π.

3 Finite Solvability

For s ∈ N , let Γ̂s denote any of Π̂s and Σ̂s, and let Γs denote any of Πs and Σs.

Definition 3.1 Let

f = Q1n1 Q2n2 . . . Qsns P (n1, n2, . . . , ns),

with s ∈ N , where Q1, Q2, . . . , Qs are alternating quantifier symbols.

1. A test set for f is set T ⊆ N
s such that f is true in N

s if and only if it is true in
T .

2. The problem of f is finitely solvable if there is a finite test set for f .

4

Theorem 3.1 Let s ∈ N . Every f ∈ Γ̂s is finitely solvable.

Proof. Let
f = Q1n1 Q2n2 . . . Qsns P (n1, n2, . . . , ns),

with s ∈ N , where Q1, Q2, . . . , Qs are alternating quantifier symbols. We determine a
sequence N1,N2, . . . ,Ns of finite sets with Ni ⊆ N

i such that the problem posed by f

can be solved by checking all s-tuples (n1, n2, . . . , ns) ∈ Ns.
We define the sets Ni by induction on i. For this purpose, let

fi(m1, . . . ,mi−1) = Qini . . . Qsns P (m1, . . . ,mi−1, ni, . . . , ns),

wherem1, . . . ,mi−1 ∈ N . In particular, f1() = f and fs+1(m1, . . . ,ms) = P (m1, . . . ,ms).
For i = 1, if Q1 = ∀, let

ν1 = 1 if f = f1() is true,

and
ν1 = min{m1 | m1 ∈ N ,¬f2(m1)} otherwise;

if Q1 = ∃, let
ν1 = 1 if f = f1() is not true,

and
ν1 = min{m1 | m1 ∈ N , f2(m1)} otherwise.

Let N1 = {(m1) | m1 ∈ N ,m1 ≤ ν1}.
Now, suppose Ni−1 has been defined and i ≤ s. For each (m1, . . . ,mi−1) ∈ Ni−1,

define νi(m1, . . . ,mi−1) ∈ N 0 as follows. If Qi = ∀, let

νi(m1, . . . ,mi−1) = 1 if fi(m1, . . . ,mi−1) is true,

and

νi(m1, . . . ,mi−1) = min{mi | mi ∈ N ,¬fi+1(m1, . . . ,mi−1,mi)} otherwise;

if Qi = ∃, let

νi(m1, . . . ,mi−1) = 1 if fi(m1, . . . ,mi−1) is not true,

and

νi(m1, . . . ,mi−1) = min{mi | mi ∈ N , fi+1(m1, . . . ,mi−1,mi)} otherwise.

Let

Ni = {(m1, . . . ,mi) | (m1, . . . ,mi−1) ∈ Ni−1,mi ∈ N ,mi ≤ ν(m1, . . . ,mi−1)}.

We now prove,8 by induction on i, that each set Ti = Ni × N
s−i is a test set for f .

Then, in particular, Ns is a finite test set for f .

8We decided to include this rather straight-forward proof as it was only by this proof that we discovered
some subtle traps in the construction of the test sets.

5

Consider i = 1. Suppose first that Q1 = ∀. The set N1is {(1)} and, clearly, the set
T1 is a test set9 for f . When f is false the set N1 consist of all positive integers up to
the first counter-example for the first variable of P . Hence, again, T1 is a test set for f .
On the other hand, suppose that Q1 = ∃. Then N1 = {(1)} when f is false. Clearly T1

is a test set10 for f . When f is true the set N1 consists of all positive integers up to the
first witness for the first variable of P . Again T1 is a test set for f .

Now consider i > 1 and assume that Ti−1 is a test set for f . First suppose that Qi = ∀.
Consider (m1, . . . ,mi−1) ∈ Ni−1. If fi(m1, . . . ,mi−1) is true then νi(m1, . . . ,mi−1) = 1.
As Ti−1 is a test set for f , to test whether f is true on {(m1, . . . ,mi−1)}×N s−i+1 it suffices
to test on {(m1, . . . ,mi1 , 1)} ×Ns−i, and (m1, . . . ,mi−1, 1) ∈ Ni. If fi(m1, . . . ,mi−1) is
false then Ni contains all the i-tuples (m1, . . . ,mi−1,mi) with mi ranging from 1 to the
smallest counter-example. Hence, as Ti−1 is a test set for f so is Ti.

Now suppose that Qi = ∃. If fi(m1, . . . ,mi−1) is false then νi(m1, . . . ,mi−1) = 1. As
Ti−1 is a test set for f , to test whether f is true on {(m1, . . . ,mi−1)}× N

s−i+1 it suffices
to test on {(m1, . . . ,mi1 , 1)} ×Ns−i, and (m1, . . . ,mi−1, 1) ∈ Ni. If fi(m1, . . . ,mi−1) is
true then Ni contains all the i-tuples (m1, . . . ,mi−1,mi) with mi ranging from 1 to the
smallest witness. Hence, as Ti−1 is a test set for f so is Ti. 2

The proof of Theorem 3.1 is non-constructive and this remains so even when P is
decidable. Thus, from this proof we do not learn anything about the number of cases one
needs to check in order to prove or disprove the truth of f . It is clear from the theories
of arithmetic classes and degrees of unsolvability that, in general, finite test sets cannot
be constructed for this type of problems even when the predicate is computable. We try
to shed some light, from a different perspective, on some of the reasons why this cannot
be done.

The proof of Theorem 3.1 highlights a typical pitfall in proofs in computability theory
when the reasoning of classical logic is used. The proof and the statement proved are
computationally meaningless as neither helps with actually solving the Γ̂s-problem. The
“construction” of the sets Ni in the proof disguises the fact that none of these finite sets
may be computable. See, for example, the formula fG expressing Goldbach’s conjecture.

The statement of Theorem 3.1 has some similarity with the Test Set Theorem in
formal language theory. This theorem, originally known as Ehrenfeucht’s conjecture,
can be stated as follows: Let X and Y be alphabets, and let L ⊆ X∗. There exists
a finite subset F of L, a test set, such that, for any two morphisms f, g from X∗ to
Y ∗, f(u) = g(u) for all u ∈ L whenever f(u) = g(u) for all u ∈ F . This was proved
independently in [1] and [18].11 In [7] and also [11] it is pointed out that the existence
of the test sets is not constructive.12 In the statement of the Test Set Theorem for
languages, the order of the quantifiers, that is, ∀L∃F∀f∀g, is very important. The
modified order ∀L∀f∀g∃F results in a far simpler statement, for which a proof can be
given using the same ideas as in the proof of Theorem 3.1.

9In fact, the empty set would be a test set for f . However, if one uses this idea, that is sets ν1 to 0
rather than 1 – and similarly for νi in general – then the ‘construction’ seems to break down.

10Again the empty set could have been used were it not for problems with the subsequent steps of the
‘construction’.

11Explanations of the proofs are given in [27] and [33]. For further information see [13].
12Under special assumptions on L like regularity, test sets can be effectively constructed [20], [21]; see

also [13].

6

In the sequel, for f ∈ Γ̂s, let N(f) = Ns with Ns as in the proof of Theorem 3.1. In
particular, when s = 1, then N(f) is the set {(n1) | n1 ∈ N , n1 ≤ ν1}. For this case, we
define ν(f) = ν1.

4 Π1-Problems

In this section, we analyze the case of Π1-problems in greater detail. Let X be an
arbitrary but fixed alphabet. We use X as the alphabet for programs of universal Turing
machines. We also fix a computable bijective function 〈 , 〉 : X∗ × N 0 → X∗. Consider
f = ∀n P (n) where P is a computable predicate on N . We assume that P is given as a
program for an arbitrary, but fixed universal Turing machine U . Thus P is given as a
word πP ∈ X∗ such that U(〈πP , n〉) = P (n) for all n ∈ N . One can, therefore, consider
ν as a partial function of X∗ into N 0, that is, ν(πP) = ν(f) with f as above. We first
determine an upper bound on ν(f) for f ∈ Π1.

The busy beaver function σ : N → N ([29]; see also [15], [16], Chapter 39) is defined
as follows:

σ(n) = max{U(x) | x is a program of length n for U and U(x) halts on x}.

Let P be a computable unary predicate on N , let f = ∀n P (n), hence f ∈ Π1.
Consider a program pf for U such that

U(pf) = min{n | ¬P (n)},

if f is not true, and such that U runs forever on pf if f is true. Such a program always
exists because the program, which tries P (1), P (2), . . . and halts with the first n such
that ¬P (n), has the required properties. Let mf = |pf |. If f is not true then U halts on
pf with output ν(f). Hence ν(f) ≤ σ(mf). If f is true then ν(f) = 0. This proves the
following statement.

Proposition 4.1 For every f ∈ Π1, ν(f) ≤ σ(mf).

By Theorem 4.1, to solve the problem of f one only needs to check the truth value
of P (n) for all n not exceeding σ(mf). This could be very useful if σ were computable.
However, σ grows faster than any computable function. Hence, the bound ν(f) ≤ σ(mf)
does not help in the actual solution of the problem of f . In fact, no computable bound
exists! Here is the argument. For any π ∈ X∗, define the predicate Pπ on N by

Pπ(n) =

{
1, U(π) does not halt within n steps,
0, otherwise.

Clearly, the predicate is computable. Let fπ = ∀nPπ(n). Then fπ is true if and only
if U(π) does not halt.

Assume now that there is a program to compute an upper bound of ν(f) for any
f ∈ Π1; this program takes, as input, a program ρ computing the predicate P ρ and
computes as output an integer ν ′(ρ) such that ν(fρ) ≤ ν ′(ρ), where fρ = ∀n P ρ(n). We
show that this assumption implies the existence of an algorithm deciding the halting
problem for Turing machines. Indeed, consider π ∈ X∗. To decide whether U(π) halts,
first compute a program pπ computing Pπ. Next compute ν ′(pπ). As fπ = fpπ , one
has ν(fπ) ≤ ν ′(pπ). Hence, to determine whether fπ is true, it is sufficient to determine
whether Pπ(n) for all n ≤ ν ′(pπ). If so, then U(π) halts; otherwise it doesn’t.

7

Theorem 4.1 The upper bound ν is Turing-complete.

Proof. We already showed that an oracle for ν or an upper bound on ν allows one to
decide the halting problem. The conversely follows from Proposition 4.1. 2

Corollary 4.1 There is no constructive proof showing that every f ∈ Π1 has a finite
test set.

With appropriate modifications, a statement similar to Corollary 4.1 can be proved
for Σ1. In fact, for any s ∈ N and any Γs, there is no constructive proof of the fact that
every f ∈ Γs has a finite test set.

5 Conclusions

Many true Π1-problems are undecidable, hence independent with respect to a given
sufficiently rich, sound, and computably axiomatizable theory. The analysis above can
help us in understanding this phenomenon. Knowing that P is false can be used to get
a proof that “P is false”: we keep computing P (n), for large enough n until we get an
n such that ¬P (n). But this situation is not symmetric: if we know that P is true we
might not be able to prove that “P is true”, and this case is quite frequent [10]. Indeed,
even when we “have” the proof, that is, we have successfully checked that P (n) 6= 0,
for all n ≤ ν((∀n)P (n)), we might not be able to “realise” that we have achieved the
necessary bound.

The correspondence P 7→ ν((∀n)P (n)) exists and is perfectly legitimate from a classi-
cal point of view, but has no constructive “meaning”. To a large extent the mathematical
activity can be regarded as a gigantic, collective effort to compute individual instances
of the function ν((∀n)P (n)). This point of view is consistent with Post’s description of
mathematical creativity [28]: “Every symbolic logic is incomplete and extendible relative
to the class of propositions constituting K0. The conclusion is inescapable that even for
such a fixed, well defined body of mathematical propositions, mathematical thinking is,
and must remain, essentially creative.”13 It also gives support to the “quasi-empirical”
view of mathematics, which sustains that although mathematics and physics are differ-
ent, it is more a matter of degree than black and white [12, 9]; see also [24].

In essence, the seemingly paradoxical situation arises from the fact that, in classical
logic, it may happen that only finite resources are needed for defining a finite object
while finite resources will not suffice to determine the same object constructively. The
finite “character” of a problem may nevertheless rule out – in a very fundamental way –
that its solution can be obtained by finite means.

Acknowledgment

We thank Douglas Bridges, Greg Chaitin and Solomon Marcus for stimulating discus-
sions.

13As usual, K0 means the halting problem in this quote.

8

References

[1] M. H. Albert, J. Lawrence: A proof of Ehrenfeucht’s conjecture. Theoret. Comput.
Sci. 41 (1985), 121–123.

[2] C. H. Bennett: Chaitin’s Omega. In M. Gardner (editor): Fractal Music, Hyper-
cards, and More . . . 307–319. W. H. Freeman, New York, 1992.

[3] R. P. Brent, J. v. d. Lune, H. J. J. t. Riele, D. T. Winter: On the zeros of the
Riemann zeta function in the critical strip I. Math. Comp. 33 (1979), 1361–1372.

[4] R. P. Brent, J. v. d. Lune, H. J. J. t. Riele, D. T. Winter: On the zeros of the
Riemann zeta function in the critical strip II. Math. Comp. 39 (1982), 681–688.

[5] R. P. Brent, J. v. d. Lune, H. J. J. t. Riele, D. T. Winter: On the zeros of the
Riemann zeta function in the critical strip III. Math. Comp. 41 (1983), 759–767.

[6] R. P. Brent, J. v. d. Lune, H. J. J. t. Riele, D. T. Winter: On the zeros of the
Riemann zeta function in the critical strip IV. Math. Comp. 46 (1986), 667–681.

[7] C. Calude: Note on Ehrenfeucht’s conjecture and Hilbert’s basis theorem. Bull.
EATCS 29 (1986), 18–22.

[8] C. Calude: Theories of Computational Complexities. North-Holland, Amsterdam,
1988.

[9] C. S. Calude, G. J. Chaitin: Randomness everywhere. Nature, 400, 22 July (1999),
310–311.

[10] C. Calude, H. Jürgensen, M. Zimand: Is independence an exception? Applied
Mathematics and Computation 66 (1994), 63–76.

[11] C. Calude, D. Vaida: Ehrenfeucht test set theorem and Hilbert basis theorem: A
constructive glimpse. In A. Kreczmar, G. Mirkowska (editors): Mathematical Foun-
dations of Computer Science; Porabka-Kozubnik, Poland; August 28–September 1,
1989. Lecture Notes in Computer Science 379, 177–184, Springer-Verlag, Berlin,
1989.

[12] G. J. Chaitin: The Unknowable. Springer-Verlag, Singapore, 1999.

[13] C. Choffrut, J. Karhumäki: Combinatorics on words. In G. Rozenberg, A. Salomaa
(editors): Handbook of Formal Language Theory, Vol. 1, 329–438, Springer-Verlag,
Berlin.

[14] M. Davis, Y. V. Matijasevič, J. Robinson: Hilbert’s tenth problem. Diophantine
equations: Positive aspects of a negative solution. In F. E. Browder (editor): Math-
ematical Developments Arising from Hilbert Problems. 323–378. American Mathe-
matical Society, Providence, RI, 1976.

[15] A. K. Dewdney: A computer trap for the busy beaver, the hardest-working Turing
machine. Scientific American 251(8) (1984), 19–23.

[16] A. K. Dewdney: The New Turing Omnibus. Computer Science Press, New York,
1993.

9

[17] L. E. Dickson: History of the Theory of Numbers. Carnegie Institute, Washington,
1919, 1920, 1923. 3 volumes.

[18] V. S. Guba: The equivalence of infinite systems of equations in free groups and
semigroups. Mat. Zametki 40 (1986), 321–324, in Russian.

[19] G. H. Hardy: Goldbach’s theorem. Mat. Tid. B 1 (1922), 1–16. Reprinted in
Collected Papers of G. H. Hardy, vol. 1, Oxford University Press, Oxford, 1966,
545–560.

[20] J. Karhumäki, W. Rytter, S. Jarominek: Efficient constructions of test sets for
regular and context-free languages. Theoret. Comput. Sci. 116 (1993), 305–316.

[21] J. Karhumäki, W. Plandowski, W. Rytter: Polynomial size test sets for context-free
languages. J. Comput. System Sci. 50 (1995), 11–19.

[22] W. A. Light, T. J. Forres, N. Hammond, S. Roe: A note on the Goldbach conjecture.
BIT 20 (1980), 525.

[23] Y. V. Matijasevič: Hilbert’s Tenth Problem. MIT Press, Cambridge, MA, 1993,
117–122.

[24] S. Marcus: Bridging linguistics and computer science, via mathematics. In
C. S. Calude (editor): People and Ideas in Theoretical Computer Science. 163–
176. Springer-Verlag, Singapore, 1998.

[25] A. M. Odlyzko: Tables of zeros of the Riemann zeta function at http://www.

research.att.com/~amo/zeta tables/index.html.

[26] C.-T. Pan: Goldbach Conjecture. Science Press, Beijing, 1992.

[27] D. Perrin: On the solution of Ehrenfeucht’s conjecture. Bull. EATCS 27 (1985),
68–70.

[28] E. L. Post: Recursively enumerable sets of positive integers and their decision
problems. Bull. (New Series) Amer. Math. Soc. 50 (1944), 284–316.

[29] T. Rado: On non-computable numbers. Bell System Tech. J. 3 (1962), 977–884.

[30] B. Riemann: Über die Anzahl der Primzahlen unter einer gegebenen Größe. In
Gesammelte mathematische Werke und, wissenchaftlicher Nachlaß. 177–185. Sprin-
ger-Verlag, Berlin, 1990.

[31] H. Riesel: Prime Numbers and Computer Methods for Factorization. Birkhäuser,
Boston, second ed., 1994.

[32] H. Rogers: Theory of Recursive Functions and Effective Computability. McGraw-
Hill, New York, 1967.

[33] A. Salomaa: The Ehrenfeucht conjecture: A proof for language theorists. Bull.
EATCS 27 (1985), 71–82.

[34] W. Yuan (editor): Goldbach Conjecture. Singapore, 1984. World Scientific.

10

[35] Names of large numbers & unsolved problems. http://www.smartpages.com/faqs/
sci-math-faq/unsolvedproblems/faq.html, December 1994.

11

