
Is there an Elegant Universal

Theory of Prediction?

Shane Legg

Dalle Molle Institute for Artificial Intelligence

Manno-Lugano

Switzerland

17th International Conference on
Algorithmic Learning Theory

Is there an Elegant Universal Theory of Prediction?

Solomonoff’s incomputable model of induction rapidly learns to
make optimal predictions for any computable sequence, including
probabilistic ones.

Lempel-Ziv, Context Tree Weighting and other computable

predictors can predict some computable sequences.

Question

Does there exist an elegant computable predictor that is in some

sense universal, or at least universal over large sets of simple

sequences?

Basic notation

B := {0, 1}

B
∗ := the set of binary strings

B
∞ := the set of infinite binary sequences

xn := the nth symbol in the string x ∈ B
∗

xi :j := the substring xixi+1 . . . xj−1xj

|x | := the length of the string x

f (x) <
+

g(x) :⇔ f (x) < g(x) + c for some independent constant c

Kolmogorov complexity

In this work we will use Kolmogorov complexity to measure the
complexity of both sequences and strings.

For a sequence ω ∈ B
∞ and universal Turing machine U ,

K (ω) := min
p∈B∗

{|p| : U(p) = ω}

In words: The Kolmogorov complexity of a sequence ω is the
length of the shortest program that genereates ω.

For strings, U(p) must halt with output x .

Basic definitions

Definition

A sequence ω ∈ B
∞ is a computable binary sequence if there

exists a program q ∈ B
∗ that writes ω to a one-way output tape

when run on a monotone universal Turing machine U . We denote
the set of all computable sequences by C.

Definition

A computable binary predictor is a program p ∈ B
∗ that

computes a total function B
∗ → B.

Ideally a predictor’s output should be the next symbol in the
sequence, that is, p(x1:n) = xn+1.

Predictability in the limit

We will place no limits on the predictor’s

computation time

storage capacity

Furthermore we will only consider predictability in the limit:

Definition

We say that a predictor p can learn to predict a sequence
ω := x1x2 . . . ∈ B

∞ if there exists m ∈ N such that
∀n ≥ m : p(x1:n) = xn+1.

Sets of predictors

We will be focused on the set of all predictors that are able to
predict some specific sequence ω, or all sequences in some set of
sequences S .

Definition

Let P(ω) be the set of all predictors able to learn to predict ω.
For a set of sequences S , let P(S) :=

⋂
ω∈S P(ω).

Every computable sequence can be predicted

Lemma

∀ω ∈ C,∃p ∈ P(ω) : K (p) <
+

K (ω).

In words: Every computable sequence can be predicted by at least
one predictor. This predictor need not be significantly more
complex than the sequence.

Proof sketch: Take the program q that generates the sequence ω

and convert this into a “predictor” p that always outputs the
(n + 1)th symbol of ω for any input x1:n. Clearly p is not
significantly more complex than q and correctly “predicts” ω

(and only ω!)

Simple predictors for complex strings

Lemma

There exists a predictor p such that ∀n ∈ N,∃ω ∈ C : p ∈ P(ω)
and K (ω) > n.

In words: There exists a predictor that is able to learn to predict
some strings of arbitrarily high complexity.

Proof sketch: A predictor that always predicts 0 can predict any
sequence ω of the form x0∗ no matter how complex x ∈ B

∗ is.

In a sense ω becomes a simple sequence once it has converged to
0. This is not necessary: Consider a prediction program that
detects when the input sequence is a repeating string and then
predicts accordingly. Clearly, some sequences with arbitrarily high
“tail complexity” can also be predicted by simple predictors.

There is no universal computable predictor

Lemma

For any predictor p there exists a computable sequence

ω := x1x2 . . . ∈ C such that ∀n ∈ N : p(x1:n) 6= xn+1 and

K (ω) <
+

K (p).

In words: For every computable predictor there exists a computable
sequence which it cannot predict at all, furthermore this sequence
doesn’t have to be significantly more complex than the predictor.

Proof sketch: For any prediction program p we can construct a
sequence generation program q that always outputs the opposite of
what p predicts given the sequence so far. Clearly p will always
mis-predict this sequence and q is not much more complex than p.

Prediction of simple computable sequences

As there is no universal computable sequence predictor, a weaker
goal is to be able to predict all “simple” computable sequences.

Definition

For n ∈ N, let Cn := {ω ∈ C : K (ω) ≤ n}.

Definition

Let Pn := P(Cn) be the set of predictors able to learn to predict all
sequences in Cn.

A key question then is whether Pn 6= ∅ for large n. That is,
whether powerful predictors exist that can predict all sequences up
to a high level of complexity.

Predictors for sets of bounded complexity sequences exist

Lemma

∀n ∈ N,∃p ∈ Pn : K (p) <
+

n + O(log2 n).

In words: Prediction algorithms exist that can learn to predict all
sequences up to a given complexity, and these predictors need not
be significantly more complex than the sequences they can predict.

Proof sketch: Let h be the number of valid sequence generation
programs of length up to n bits. Construct a predictor that on
input x1:k simulates all programs of length up to n bits until h of
these produce sequences of length n + 1. In the limit only the h

programs that are valid sequence generators will do this. Finally,
predict according to the lexicographically first program that is
consistent with the input string x1:k . As h can be encoded in
n + O(log2 n) bits the result follows.

Can we do better?

Do there exist simple predictors that can predict all sequences up
to a high level of complexity?

Theorem

∀n ∈ N : p ∈ Pn ⇒ K (p) >
+

n.

In words: If a predictor can predict all sequences up to a complexity
of n then the complexity of the predictor must be at least n.

Proof sketch: Follows immediately from the previous result that a
simple predictor must fail for some equally simple sequence.

Note: This result is true for any measure of complexity for which
the inversion of a single bit is an inexpensive operation.

Complexity of prediction

The previous results suggest the following definition,

Definition

K̇ (ω) := min
p∈B∗

{|p| : p ∈ P(ω)}

In words: The K̇ complexity of a sequence is the length of the
shortest program able to learn to predict the sequence.

It can easily be seen that K̇ has the same invariance to the choice
of reference universal Turing machine as Kolmogorov complexity.

We also generalise this definition to sets of sequences.

Previous results written in terms of K̇ complexity

We can now rewrite our previous results more succinctly:

∀ω : 0 ≤ K̇ (ω) <
+

K (ω),

and for sets of sequences of bounded complexity,

∀n ∈ N : n <
+

K̇ (Cn) <
+

n +O(log2 n).

In words: The simplest predictor capable of predicting all
sequences up to a Kolmogorov complexity of n, has itself a
Kolmogorov complexity of roughly n.

Do some individual sequences demand complex predictors?

Or more formally, does there exist ω such that K̇ (ω) ≈ K (ω).

Theorem

∀n ∈ N,∃ω ∈ C : n <
+

K̇ (ω) <
+

K (ω) <
+

n +O(log2 n).

In words: For all degrees of complexity, there exist sequences where
the simplest predictor able to learn to predict the sequence is
about as complex as the sequence itself.

Proof sketch: Essentially we create a meta-predictor that simulates
all predictors of complexity less than n. We then show that there
exists a sequence ω which the meta-predictor cannot predict and
therefore neither can any predictor of complexity less than n, that
is, n >

+
K̇ (ω). The remainder of the proof mostly follows from

earlier results.

What properties do high K̇ sequences have?

If program q generates ω, let tq(n) be the number of computation
steps performed by q before the nth symbol of ω is output.

Lemma

∀ω ∈ C, if ∃q : U(q) = ω and ∃r ∈ N,∀n > r : tq(n) < 2n, then

K̇ (ω)
+
= 0.

In words: If a sequence can be computed in a reasonable amount
of time, then the sequence must have a low K̇ complexity.

Proof sketch: Construct a predictor that on input x1:n simulates all

programs of length n or less for 2n+1 steps each, then predicts
according to the lexicographically first program with output
consistent with x1:n. So long as tq(n) < 2n for the true generator,
in the limit this predictor must converge to the right model.

No elegant powerful constructive theory of prediction exists

A constructive theory of prediction T , expressed in some
sufficiently rich formal system F , is in effect a description of a
prediction program with respect to a universal Turing machine
which implements the required parts of F .

Thus we can re-express our previous results,

Corollary

For individual sequences with high K̇ complexity, and for the sets

of all sequences of bounded Kolmogorov complexity, the predictive

power of a constructive theory of prediction T is limited by K (T).

This is in marked contrast to Solomonoff’s highly elegant but
non-constructive universal theory of prediction.

Gödel incompleteness and prediction

Theorem

In any formal axiomatic system F that is sufficiently rich to

express statements of the form “p ∈ Pn”, there exists m ∈ N such

that for all n > m and for all predictors p ∈ Pn the true statement

“p ∈ Pn” cannot be proven in F .

In words: Even though we have proven that very powerful sequence
prediction programs exist (∀n ∈ N : Pn 6= ∅), beyond a certain
complexity it is impossible to find any of these programs using
mathematics.

The proof has a similar structure to Chaitin’s information theoretic
proof of Gödel incompleteness.

Prediction incompleteness proof

Proof sketch: Create a search program s that searches for a proof
of the statement “p ∈ Pn” and halts with output p if it finds such
a proof.

As s contains an encoding of n, and some constant length code we
see that K (s) <

+
O(log2 n).

Assume that s finds a proof and halts with output p. This means
that s is an effective description of p and thus, K (p) <

+
O(log2 n).

However we have shown earlier that p ∈ Pn ⇒ K (p) >
+

n. Thus for
large n we have a contradiction!

Therefore, for large n the true statement p ∈ Pn cannot be proven.

Summary

