
1

Fitness Uniform Optimization
Marcus Hutter and Shane Legg

IDSIA, Galleria 2, Manno-Lugano
CH-6928 Switzerland

{marcus, shane}@idsia.ch

Abstract— In evolutionary algorithms, the fitness of a popula-
tion increases with time by mutating and recombining individuals
and by a biased selection of more fit individuals. The right
selection pressure is critical in ensuring sufficient optimization
progress on the one hand and in preserving genetic diversity
to be able to escape from local optima on the other hand.
Motivated by a universal similarity relation on the individuals,
we propose a new selection scheme, which is uniform in the
fitness values. It generates selection pressure toward sparsely
populated fitness regions, not necessarily toward higher fitness,
as is the case for all other selection schemes. We show analytically
on a simple example that the new selection scheme can be
much more effective than standard selection schemes. We also
propose a new deletion scheme which achieves a similar result
via deletion and show how such a scheme preserves genetic
diversity more effectively than standard approaches. We compare
the performance of the new schemes to tournament selection
and random deletion on an artificial deceptive problem and a
range of NP-hard problems: traveling salesman, set covering and
satisfiability.

Index Terms— Fitness uniform selection scheme, fitness uni-
form deletion scheme, preserve diversity, local optima, fitness
tree model, traveling salesman, set covering, satisfiability.

I. INTRODUCTION

A. Evolutionary algorithms (EA)

Evolutionary algorithms are capable of solving complicated
optimization tasks in which an objective function f : I → IR
shall be maximized. i ∈ I is an individual from the set I
of feasible solutions. Infeasible solutions due to constraints
may also be considered by reducing f for each violated
constraint. A population P is a multi-set of individuals from
I which is maintained and updated as follows: one or more
individuals are selected according to some selection strat-
egy. In generation based EAs, the selected individuals are
recombined (e.g. crossover) and mutated, and constitute the
new population. We prefer the more incremental, steady-state
population update, which selects (and possibly deletes) only
one or two individuals from the current population and adds
the newly recombined and mutated individuals to it. We are
interested in finding a single individual of maximal objective
value f for difficult multi-modal and deceptive problems.

B. Standard selection schemes (STD)

The standard selection schemes (abbreviated by STD in the
following), proportionate, truncation, ranking and tournament
selection all favor individuals of higher fitness [1], [2], [3],
[4]. This is also true for less common schemes, like Boltz-
mann selection [5]. The fitness function is identified with the

objective function (possibly after a monotone transformation).
In linear proportionate selection the probability of selecting
an individual depends linearly on its fitness [6]. In truncation
selection the α% fittest individuals are selected, usually with
multiplicity 1

α% to keep the population size fixed [7].(Linear)
ranking selection orders the individuals according to their
fitness. The selection probability is, then, a (linear) function of
the rank [8]. Tournament selection [9], which selects the best
l out of k individuals has primarily developed for steady-state
EAs, but can be adapted to generation based EAs. All these
selection schemes have the property (and goal!) to increase the
average fitness of a population, i.e. to evolve the population
toward higher fitness.

C. The problem of the right selection pressure

The standard selection schemes STD, together with muta-
tion and recombination, evolve the population toward higher
fitness. If the selection pressure is too high, the EA gets
stuck in a local optimum, since the genetic diversity rapidly
decreases. The suboptimal genetic material which might help
in finding the global optimum is deleted too rapidly (premature
convergence). On the other hand, the selection pressure cannot
be chosen arbitrarily low if we want the EA to be effective.
In difficult optimization problems, suitable population sizes,
mutation and recombination rates, and selection parameters,
which influence the selection intensity, are usually not known
beforehand. Often, constant values are not sufficient at all [10].
There are various suggestions to dynamically determine and
adapt the parameters [11], [12], [13], [14]. Other approaches to
preserve genetic diversity are fitness sharing [15] and crowding
[16]. They depend on the proper design of a neighborhood
function based on the specific problem structure and/or coding.
One approach which does not require a neighborhood function
based on the genome is local mating [17], however it has
been shown that rapid takeover can still occur for basic spatial
topologies [18]. Another approach which has not been widely
studied is preselection [19].

We are interested in evolutionary algorithms which do not
require special problem insight (problem specific neighbor-
hood function and/or coding) and is able to effectively prevent
population takeover. In this paper we theoretically analyze
two potential approaches to this problem: the Fitness Uniform
Selection Scheme (FUSS) and the Fitness Uniform Deletion
Scheme (FUDS).

2

D. The fitness uniform selection scheme

FUSS is based on the insight that we are not primarily
interested in a population converging to maximal fitness, but
only in a single individual of maximal fitness. The scheme
automatically creates a suitable selection pressure and pre-
serves genetic diversity better than STD. The proposed fitness
uniform selection scheme FUSS (see also Figure 1) is defined
as follows: if the lowest/highest fitness values in the current
population P are fmin/max we select a fitness value f
uniformly in the interval [fmin, fmax]. Then, the individual
i ∈ P with fitness nearest to f is selected and a copy is
added to P , possibly after mutation and recombination. We
will see that FUSS maintains genetic diversity better than
STD, since a distribution over the fitness values is used, unlike
STD, which all use a distribution over individuals. Premature
convergence is avoided in FUSS by abandoning convergence at
all. Nevertheless there is a selection pressure in FUSS toward
higher fitness. The probability of selecting a specific individual
is proportional to the distance to its nearest fitness neighbor.
In a population with a high density of unfit and low density
of fit individuals, the fitter ones are effectively favored.

E. The fitness uniform deletion scheme

We may also preserve diversity through deletion rather
than through selection. By always deleting from those in-
dividuals which have very commonly occurring fitness val-
ues we achieve a population which is uniformly distributed
across fitness values, like with FUSS. Because these deleted
individuals are “commonly occurring” in some sense this
should help preserve population diversity. Under FUDS the
role of the selection scheme is to govern how actively different
parts of the solution space are searched rather than to move
the population as a whole toward higher fitness. Thus, like
with FUSS, premature convergence is avoided by abandoning
convergence as our goal. However as FUDS is only a deletion
scheme, the EA still requires a selection scheme which may
require a selection intensity parameter to be set. Thus we do
not necessarily have a parameterless EA, as we do with FUSS.
Nevertheless due to the impossibility of population collapse
the performance is more robust than usual with respect to
variation in selection intensity. Thus FUDS is at least a partial
solution to the problem of having to correctly set a selection
intensity parameter.

F. Contents

This paper extends and supersedes the earlier results re-
ported in the conference papers [20], [21] and [22]. Among
other things, this paper: extends the previous theoretical anal-
ysis of FUSS and gives the first theoretical analysis of FUDS
and of their performance when combined; presents a new
method of analysis called fitness tree analysis; is the first set of
experimental results which directly compares the two proposed
schemes on the same problems with the same parameters,
including when they are used together; gives the first full
analysis of population diversity measurements for FUSS and in
particular extends and corrects some of the earlier speculation
about performance problems in some situations.

The paper is structured as follows:
In Section II we discuss the problems of local optima and

population takeover [2] in STD, which could be lowered by
restricting the number of similar individuals in a population.
As we often do not have an appropriate functional simi-
larity relation, we define a universal distance (semi-metric)
d(i, j) := |f(i) − f(j)| based on the available fitness only,
which will serve our needs.

Motivated by the universal similarity relation d and by the
need to preserve genetic diversity, we define in Section III
the fitness uniform selection scheme. We discuss under which
circumstances FUSS leads to an (approximate) fitness uniform
population.

Further properties of FUSS are discussed in Section IV,
especially, how FUSS creates selection pressure toward higher
fitness and how it preserves diversity better than STD. Further
topics are the equilibrium distribution, the transformation
properties of FUSS under linear and non-linear transforma-
tions of f .

Another way to utilize the ability of the universal similarity
relation d to preserve diversity, is to use it to help target
deletion. This gives us the fitness uniform deletion scheme
which we define in Section V. As this produces a population
which is approximately uniformly distributed across fitness
levels, like with FUSS, many of the properties of FUSS carry
over to an EA using FUDS. Some of these properties are
highlighted in Section VI.

In Section VII we theoretically demonstrate, by way of
a simple optimization example, that an EA with FUSS or
FUDS can optimize much faster than with STD. We show that
crossover can be effective in FUSS, even when ineffective in
STD. Furthermore, FUSS, FUDS and STD are compared to
random search with and without crossover.

In Section VIII we develop a fitness tree model, which we
believe to cover the essential features of fitness landscapes for
difficult problems with many local optima. Within this model
we derive heuristic expressions for the optimization time of
random walk, FUSS, FUDS and STD. They are compared, and
a worst case slowdown of FUSS relative to STD is obtained.

There is a possible additional slowdown when including
recombination, as discussed in Section IX, which can be
avoided by using a scale independent pair selection. It is a
“best” compromise between unrestricted recombination and
recombination of d-similar individuals only. It also has other
interesting properties when used without crossover.

To simplify the discussion we have concentrated on the case
of discrete, equi-spaced fitness values. In many practical prob-
lems, the fitness function is continuously valued. FUSS and
some of the discussion of the previous sections is generalized
to the continuous case in Section X.

Section XI begins our experimental analysis of FUSS and
FUDS. In this section we give a detailed account of the EA
software we have used for our experiments, including links to
where the source code can be downloaded.

Section XII examines the empirical performance of FUSS
and FUDS on the artificially constructed deceptive optimiza-
tion problem described in Section VII. These results confirm
the correctness of our theoretical analysis.

3

In Section XIII we test randomly generated traveling sales-
man problems.

In Section XIV we examine the set covering problem, an
NP hard optimization problem which has many real world
applications.

For our final test in Section XV we look at random CNF3
SAT problems. These are also NP hard optimization problems.
We discover some performance problems with FUSS and
examine more closely some of the reasons for this.

Section XVI contains a summary of our results and possible
avenues for future research.

II. UNIVERSAL SIMILARITY RELATION

A. The problem of local optima

Proportionate, truncation, ranking and tournament are the
standard (STD) selection algorithms used in evolutionary opti-
mization. They have the following property: if a local optimum
ilopt has been found, the number of individuals with fitness
f lopt = f(ilopt) tends to increase rapidly. Assume a low
mutation and recombination rate, or, for instance, truncation
selection after mutation and recombination. Further, assume
that it is very difficult to find an individual fitter than ilopt.
The population will then degenerate and will consist mostly of
ilopt after a few rounds. This decreased diversity makes it even
less likely that f lopt gets improved. The suboptimal genetic
material which might help in finding the global optimum has
been deleted too rapidly. On the other hand, too high mutation
and recombination rates convert the EA into an inefficient
random search.

B. Possible solution

Sometimes it is possible to appropriately choose the mu-
tation and recombination rate and population size by some
insight into the nature of the problem. More often this is a
trial and error process, or no single fixed rate works at all.

A naive fix of the problem is to artificially limit the number
of identical individuals to a significant but small fraction ε. If
the space of individuals I is large, there could be many very
similar (but not identical) individuals of, for instance, fitness
f lopt. The EA can still converge to a population containing
only this class of similar individuals, with all others becoming
extinct. In order for the limitation approach to work, one
has to restrict the number of similar individuals. Significant
contributions in this direction are fitness sharing [15] and
crowding [16].

C. The problem of finding a similarity relation

If the individuals are coded binary one might use the
Hamming distance as a similarity relation. This distance is
consistent with a mutation operator which flips a few bits.
It produces Hamming-similar individuals, but recombination
(like crossover) can produce very dissimilar individuals w.r.t.
this measure. In any case, genotypic similarity relations, like
the Hamming distance, depend on the representation of the
individuals as binary strings. Individuals with very dissimilar
genomes might actually be functionally (phenotypically) very

similar. For instance, when most bits are unused (like introns in
genetic programming), they can be randomly disturbed without
affecting the properties of the individual. For specific problems
at hand, it might be possible to find suitable representation-
independent functional similarity relations. On the other hand,
in genetic programming, for instance, it is in general undecid-
able whether two individuals are functionally similar.

D. A universal similarity relation

Here we want to take a different approach. We define the
difference or distance between two individuals as

d(i, j) := |f(i) − f(j)|.

The distance is based solely on the fitness function, which is
provided as part of the problem specification. It is independent
of the coding/representation and other problem details, and
of the optimization algorithm (e.g. the genetic mutation and
recombination operators), and can trivially be computed from
the fitness values. If we make the natural assumption that
functionally similar individuals have similar fitness, they are
also similar w.r.t. the distance d. On the other hand, individuals
with very different coding, and even functionally dissimilar
individuals may be d-similar, but we will see that this does not
matter. For instance, individuals from different local optima of
equal height are d-similar.

E. Relation to niching and crowding

Unlike fitness uniform optimization, diversity control meth-
ods like niching or crowding require a metric g to be defined
over the genome space. By looking at the relationship between
g and f we can relate these two types of diversity control:
We say that a fitness function f is smooth with respect to g,
if g(i, j) being small implies that |f(i) − f(j)| is also small,
that is, d(i, j) is small. This implies that if d(i, j) is not small,
g(i, j) also cannot be small. Thus, if we limit the number of d
similar individuals, as we do in fitness uniform optimization,
this will also limit the number of g similar individuals, as
is done in crowding and niching methods. The advantage of
fitness uniform optimization is that we do not need to know
what g is, or to compute its value. Indeed, the above argument
is true for any metric g on the genome space that f is smooth
with respect to.

On the other hand, if the fitness function f is not generally
smooth with respect to g, then such a comparison between the
methods cannot be made. However, in this case an EA is less
likely to be effective as small mutations in genome space with
respect to g will produce unpredictable changes in fitness.

F. Topologies on individual space I

The distance d : I×I → IR+
0 induced by the fitness function

f is a semi-metric on the individual space I (semi only because
d(i, j) = 0 for i 6= j is possible). The semi-metric induces a
topology on I . Equal fitness suffices to declare two individuals
as d-equivalent, i.e. d is a rather small semi-metric in the sense
that the induced topology is rather coarse. We will see that
a non-zero distance between individuals of different fitness

4

is sufficient to avoiding the population takeover. d induces
the coarsest topology (is the “smallest” distance) avoiding
population takeover.

G. The problem of genetic drift

Besides elitist selection, the other major cause of diversity
loss in a population is genetic drift. This occurs due to the
stochastic nature of the selection operator breeding some
individuals more often than others. In a finite population this
will cause some individuals to be replaced which have no close
relatives, thus reducing diversity. Indeed, without a sufficient
rate of mutation, eventually a population will converge on a
single genome; even if no selection pressure is applied.

Although fitness uniform optimization does not attempt
to address this problem, some implications can be drawn.
Clearly, with fitness uniform optimization a complete collapse
in diversity is impossible as individuals with a wide range of
fitness values are always preserved in the population. However,
within a given fitness level genetic drift can occur, although the
sustained presence of many individuals in other fitness levels
to breed with will reduce this effect.

Theoretical analysis of genetic drift is often performed by
calculating the Markov chain transition matrices to compute
the time for the system to reach an absorption state where
all of the population members have the same genome. As
these results can be difficult to generalize, an alternative
approach has been to measure genetic drift by measuring
the loss in fitness diversity in a population over time [23].
This is interesting as fitness uniform optimization attempts to
maximize the entropy of the fitness values in the population,
producing a very high variance in population fitness. Thus, at
least according to the second method of analysis, very little
genetic drift would be evident in the population.

III. FITNESS UNIFORM SELECTION SCHEME (FUSS)

A. Discrete fitness function

In this section we propose a new selection scheme, which
limits the fraction of d-similar individuals. For simplicity
we start with a fitness function f : I → F with dis-
crete equi-spaced values F = {fmin, fmin + ε, fmin +
2ε, ..., fmax − ε, fmax}. We call two individuals i and j δ-
similar if d(i, j) ≡ |f(i) − f(j)| ≤ δ. The continuous valued
case F = [fmin, fmax] is considered later. In the following
we assume δ < ε. In this case, two individuals are δ-similar
if and only if they have the same fitness.

B. The goal

We have argued that in order to escape local optima, genetic
variety should be preserved somehow. One way is to limit
the number of δ-similar individuals in the population. In
an exact fitness uniform distribution there would be |P |/|F |
individuals for each of the |F | fitness values, i.e. each fitness
level would be occupied by a fraction of 1/|F | individuals.
The following selection scheme asymptotically transforms any
finite population into a fitness uniform one.

proportional

f

n(f)

f

n(f)

f

p(f)

* =

f

n(f)

f

n(f)

f

p(f)

ranking &
* =

f

n(f)

f

n(f)

f

p(f)

truncation

* =

f

n(f)

f

n(f)

f

p(f)

FUSS

* =

f

n(f)

f

n(f)

f

p(f)

uniform

* =

tournament

Fig. 1. Effects of proportionate, truncation, ranking & tournament, uniform,
and fitness uniform (FUSS) selection on the fitness distribution in a generation
based EA. The left/right diagrams depict fitness distributions before/after
applying the selection schemes depicted in the middle diagrams. Note that for
populations with a non-Gaussian distribution of fitness values (left column),
the graph of selection probability vs. fitness for FUSS (center bottom) can be
totally different to that illustrated above, however the population distribution
that results (right bottom) will be the same.

C. The fitness uniform selection scheme (FUSS)

FUSS is defined as follows: randomly select a fitness value
f uniformly from the fitness values F . Uniformly at random
select an individual i ∈ P with fitness f . Add another copy
of i to P .

Note the two stage uniform selection process which is very
different from a one step uniform selection of an individual
of P (see Figure 1). In STD, inertia increases with population
size. A large mass of unfit individuals reduces the probability
of selecting fit individuals. This is not the case for FUSS.
Hence, without loss of performance, we can define a pure
model, in which no individual is ever deleted; the population
size increases with time. No genetic material is ever discarded
and no fine-tuning in population size is necessary. What may

5

Fig. 2. If the lowest/highest fitness values in the current population P
are fmin/max, FUSS selects a fitness value f uniformly in the interval
[fmin, fmax], then, the individual i ∈ P with fitness nearest to f is selected
and a copy is added to P , possibly after mutation and recombination.

prevent the pure model from being applied to practical prob-
lems are not computation time issues, but memory problems.
If space becomes a problem we delete random individuals, as
is usually done with a steady state EA.

D. Asymptotically fitness uniform distribution

The expected number of individuals per fitness level f after
t selections is nt(f) = n0(f) + t/|F |, where n0(f) is the
initial distribution. Hence, asymptotically each fitness level
gets occupied uniformly by a fraction

nt(f)

|Pt|
=

n0(f) + t/|F |
|P0| + t

→ 1

|F | for t → ∞,

where Pt is the population at time t. The same limit holds
if each selection is accompanied by uniformly deleting one
individual from the (now constant sized) population.

E. Fitness gaps and continuous fitness

We made two unrealistic assumptions. First, we assumed
that each fitness level is initially occupied. If the small-
est/largest fitness values in Pt are f t

min/max we extend the
definition of FUSS by selecting a fitness value f uniformly in
the interval [f t

min − 1
2ε, f t

max + 1
2ε] and an individual i ∈ Pt

with fitness nearest to f (see Figure 2). This also covers the
case when there are missing intermediate fitness values, and
also works for continuous valued fitness functions (ε → 0).

F. Mutation and recombination

The second assumption was that there is no mutation and
recombination. In the presence of a small mutation and/or
recombination rate eventually each fitness level will become
occupied and the occupation fraction is still asymptotically
approximately uniform. For larger rate the distribution will
be no longer uniform, but the important point is that the
occupation fraction of no fitness level decreases to zero for
t → ∞, unlike for STD. Furthermore, FUSS selects by
construction uniformly in the fitness levels, even if the levels
are not uniformly occupied. We will see that this is the more
important property.

Fig. 3. Evolution of the population under FUSS versus standard selection
schemes (STD): STD may get stuck in a local optimum if all unfit individuals
were eliminated too quickly. In FUSS, all fitness levels remain occupied with
“free” drift within and in-between fitness levels, from which new mutants are
steadily created, occasionally leading to further evolution in a more promising
direction.

IV. PROPERTIES OF FUSS

A. FUSS effectively favors fit individuals

FUSS preserves diversity better than STD, but the latter
have a (higher) selection pressure toward higher fitness, which
is necessary for optimization. At first glance it seems that
there is no such pressure at all in FUSS, but this is deceiving.
As FUSS selects uniformly in the fitness levels, individuals
of low populated fitness levels are effectively favored. The
probability of selecting a specific individual with fitness f
is inversely proportional to nt(f) (see Figure 1). In an initial
typical (FUSS) population there are many unfit and only a few
fit individuals. Hence, fit individuals are effectively favored
until the population becomes fitness uniform. Occasionally, a
new higher fitness level is discovered and occupied by a single
new individual, which then, again, is favored.

6

B. No takeover in FUSS

With FUSS, takeover of the highest fitness level never
happens. The concept of takeover time [2] is meaningless for
FUSS. The fraction of fittest individuals in a population is
always small. This implies that the average population fitness
is always much lower than the best fitness. Actually, a large
number of fit individuals is usually not the true optimization
goal. A single fittest individual usually suffices to solve the
optimization task.

C. FUSS may also favor unfit individuals

Note, if it is also difficult to find individuals of low fitness,
i.e. if there are only a few individuals of low fitness, FUSS will
also favor these individuals. Half of the time is “wasted” in
searching on the wrong end of the fitness scale. This possible
slowdown by a factor of 2 is usually acceptable. In Section
VII we will see that in certain circumstances this behavior can
actually speedup the search. In general, fitness levels which are
difficult to reach, are favored.

D. Distribution within a fitness level

Within a fitness level there is no selection pressure which
could further exponentially decrease the population in certain
regions of the individual space. This (exponential) reduction is
the major enemy of diversity, which is suppressed by FUSS.
Within a fitness level, the individuals freely drift around (by
mutation). Furthermore, there is a steady stream of individuals
into and out of a level by (d)evolution from (higher)lower lev-
els. Consequently, FUSS develops an equilibrium distribution
which is nowhere zero. This does not mean that the distribution
within a level is uniform. For instance, if there are two (local)
maxima of same height, a very broad one and a very narrow
one, the broad one may be populated much more than the
narrow one, since it is much easier to “find”.

E. Steady creation of individuals from every fitness level

In STD, a wrong step (mutation) at some point in evolution
might cause further evolution in the wrong direction. Once a
local optimum has been found and all unfit individuals were
eliminated it is very difficult to undo the wrong step. In FUSS,
all fitness levels remain occupied from which new mutants are
steadily created, occasionally leading to further evolution in a
more promising direction (see Figure 3).

F. Transformation properties of FUSS

FUSS (with continuous fitness) is independent of a scaling
and a shift of the fitness function, i.e. FUSS(f̃) with f̃(i) :=
a · f(i) + b is identical to FUSS(f). This is true even for
a < 0, since FUSS searches for maxima and minima, as we
have seen. It is not independent of a non-linear (monotone)
transformation unlike tournament, ranking and truncation se-
lection. The non-linear transformation properties are more like
the ones of proportionate selection.

V. FITNESS UNIFORM DELETION SCHEME (FUDS)

For a steady state evolutionary algorithm each cycle of
the system consists of both selecting which individual or
individuals to crossover and mutate, and then selecting which
individual is to be deleted in order to make space for the
new child. The usual deletion scheme used is random deletion
as this is neutral in the sense that it does not bias the
distribution of the population in any way and does not require
additional work to be done, such as evaluating the similarity
of individuals based on their genes. Another common strategy
is to use an elitist deletion scheme.

Here we propose to use the similarity semi-metric d de-
fined in Section II to achieve a uniform distribution across
fitness levels, like with FUSS, except that we achieve this by
selectively deleting those members of the population which
have very commonly occurring fitness values. Of course this
leaves the selection scheme unspecified, indeed we may use
any standard selection scheme such as tournament selection in
combination with FUDS. It also means that we lose one of the
nice features of FUSS as we now need to manually tune the
selection intensity for our application — FUSS of course is
parameterless. Nevertheless it allows us to give many FUSS
like properties to an existing EA using a standard selection
scheme with only a minor modification to the deletion scheme.

The intuition behind why FUDS preserves population diver-
sity is very simple: If an individual has a fitness value which is
very rare in the population then this individual almost certainly
contains unique information which, if it were to be deleted,
would decrease the total population diversity. Conversely, if we
delete an individual with very commonly occurring fitness then
we are unlikely to be losing significant diversity. Presumably
most of these individuals are common in some sense and likely
exist in parts of the solution space which are easy to reach.
Thus the fitness uniform deletion strategy is now clear: Only
delete individuals with very commonly occurring fitness values
as these individuals are less likely to contain important genetic
diversity.

Practically FUDS is implemented as follows. Let fmin

and fmax be the minimum and maximum fitness values
possible for a problem, or at least reasonable upper and lower
bounds. We divide the interval [fmin, fmax] into a collection
of subintervals of equal length {[fmin, fmin + a), [fmin +
a, fmin + 2a), . . . , [fmax − a, fmax]} which we call fitness
levels. As individuals are added to the population their fitness
is computed and they are placed in the set of individuals
corresponding to the fitness level they belong to. Thus the
number of individuals in each fitness level describes how
common fitness values within this interval are in the current
population. When a deletion is required the algorithm locates
the fitness level with the greatest number of individuals and
then deletes a random individual from this level. In the case
where multiple fitness levels have maximal size the lowest of
these levels is used.

If the number of fitness levels is chosen too low, say 5 levels,
then the resulting model of the distribution of individuals
across the fitness range will be too coarse. Alternatively if
a large number of fitness levels is used with a very small

7

population the individuals may become too thinly spread
across the fitness levels. While in these extreme cases this
could affect the performance of FUDS, in practice we have
found that the system is not very sensitive to the setting of
this parameter. If n is the population size then setting the
number of fitness levels to be

√
n is a good rule of thumb.

For discrete valued fitness functions there is a natural
lower bound on the interval length a because below a certain
value there will be more intervals than unique fitness values.
Of course this cannot happen when the fitness function is
continuous. Other than this small technical detail, the two
cases are treated identically.

As FUDS spreads the individuals out across a wide range
of fitness values, for small populations the EA may become
inefficient as only a few individuals will have relatively high
fitness. For problems which are not deceptive this is especially
true as there will be little value in having individuals in the
population with low to medium fitness. Of course these are
not the kinds of problems for which FUDS was designed.
In practice we have always used populations of between 250
and 5,000 individuals and have not observed a decline in
performance relative to random deletion at the lower end of
this range.

An alternative implementation that avoids this discretization
problem is to choose the two individuals that have the most
similar fitness and delete one of them. An efficient imple-
mentation keeps a list of the individuals ordered by their
fitness along with an ordered list of the distances between the
individuals. Then in each cycle one of the two individuals
with closest fitness to each other is selected for deletion.
Although the performance of this algorithm was better than
random deletion, it was not as good as the implementation
of FUDS using bins. We conjecture that the reason for this
is as follows: When there are just a few very fit individuals
in the population it is quite likely that they will be highly
related to each other and have very similar fitness. This means
that if we delete the individuals with most similar fitness it is
likely that many of the very fit individuals will be deleted.
However with the bins approach this will not happen as
there are typically few individuals in the high fitness bins.
Thus, although deleting one of the closest individuals in terms
of fitness might preserve diversity well, it also changes the
pressure on the population distribution over fitness levels.
This small change in distribution dynamics appears to reduce
performance in practice.

VI. PROPERTIES OF FUDS

As FUDS uniformly distributes the population across fitness
levels, like FUSS does, many of the key properties of FUSS
also carry over to an EA that is using a standard selection
scheme (STD) combined with FUDS deletion.

A. No takeover in FUDS

Under FUDS the takeover of the highest fitness level, or
indeed any fitness level, is impossible. This is easy to see
because as soon as any fitness level starts to dominate, all
of the deletions become focused on this level until it is no

longer the most populated fitness level. As a by-product, this
also means that individuals on relatively unpopulated fitness
levels are preserved.

B. Steady creation of individuals from every fitness level

Another similarity with FUSS is the steady creation of in-
dividuals on many different fitness levels. This occurs because
under FUDS some individuals on each fitness level are always
kept. This makes it relatively easy for the EA to find its way
out of local optima as it keeps on exploring evolutionary paths
which do not at first appear to be promising.

C. Robust performance with respect to selection intensity

Because FUDS is only a deletion scheme, we still need
to choose a selection scheme for the EA. Of course this
selection scheme may then require us to set a selection
intensity parameter. While this is not as desirable as FUSS,
which has no such parameter, at least with FUDS we expect
the performance of the system to be less sensitive to the correct
setting of this parameter. For example, if the selection intensity
is set too high the normal problem is that the population rushes
into a local optimum too soon and becomes stuck before it has
had a chance to properly explore the genotype space for other
promising regions. However, as we noted above, with FUDS a
total collapse in population diversity is impossible. Thus much
higher levels of selection intensity may be used without the
risk of premature convergence.

In some situations if very low section intensity is used along
with random deletion, the population tends not to explore
the higher areas of the fitness landscape at all. This can be
illustrated by a simple example. Consider a population which
contains 1,000 individuals. Under random deletion all of these
individuals, including the highly fit ones, will have a 1 in 1,000
chance of being deleted in each cycle and so the expected life
time of an individual is 1,000 deletion cycles. Thus if a highly
fit individual is to contribute a child of the same fitness or
higher, it must do so reasonably quickly. However for some
optimization problems the probability of a fit individual having
such a child when it is selected is very low, so low in fact that
it is more likely to be deleted before this happens. As a result
the population becomes stuck, unable to find individuals of
greater fitness before the fittest individuals are killed off.

The usual solution to this problem is to increase the selec-
tion intensity because then the fit individuals are selected more
often and thus are more likely to contribute a child of similar
or greater fitness before they are deleted. Another is to change
the deletion scheme so that these individuals live longer. This
is what happens with FUDS as rare fit individuals are not
deleted. Effectively it means that with FUDS we can often
use much lower selection intensity without the population
becoming stuck.

D. Transformation properties of FUDS

While with FUDS we have the added complication of
having to choose the number of subintervals with which to
break up the fitness values, this number is only a function

8

of the population size and distributional characteristics of the
problem. Thus any linear transformation of the fitness function
has no effect on FUDS. However, non-linear transformations
will affect performance.

E. Problem and representation independence

Because FUDS only requires the fitness of individuals,
the method is completely independent of the problem and
genotype representation, i.e. how the individuals are coded.

F. Simple implementation and low computational cost

As the algorithm is simple and the fitness function is given
as part of the problem specification, FUDS is very easy to
implement and requires few computational resources.

VII. A SIMPLE EXAMPLE

In the following we use a simple example problem to
compare the performance of fitness uniform selection (FUSS),
random search (RAND), standard selection (STD) with and
without recombination, and standard selection with the fitness
uniform deletion scheme (FUDS). We regard this problem as
a prototype for deceptive multi-modal functions. The example
demonstrates how FUSS and FUDS can be superior to RAND
and STD in some situations. More generic situations will be
considered in Section VIII. An experimental analysis of this
problem appears in Section XII.

A. Simple 2D example

Consider individuals (x, y) ∈ I := [0, 1] × [0, 1], which are
tuples of real numbers, each coordinate in the interval [0, 1].
The example models individuals possessing up to 2 “features”.
Individual i possesses feature I1 if i ∈ I1 := [a, a+∆]×[0, 1],
and feature I2 if i ∈ I2 := [0, 1] × [b, b + ∆]. The fitness
function f : I → {1, 2, 3} is defined as

f(x, y) =

1 if (x, y) ∈ I1\I2,
2 if (x, y) ∈ I2\I1,
3 if (x, y) 6∈ I1 ∪ I2,
4 if (x, y) ∈ I1 ∩ I2.

6

-

4

3 1 3

33

2 2

1

x∆a

∆
b

1

1
y f(x, y)

We assume ∆ � 1. Individuals with neither of the two
features (i ∈ I\(I1 ∪ I2)) have fitness f = 3. These “local
f = 3 optima” occupy most of the individual space I , namely
a fraction (1−∆)2. It is disadvantageous for an individual to
possess only one of the two features (i ∈ (I1\I2) ∪ (I2\I1)),
since f = 1 or 2 in this case. In combination (i ∈ I1 ∩ I2)),
the two features lead to the highest fitness, but the global
maximum f = 4 occupies the smallest fraction ∆2 of the
individual space I . With a fraction ∆(1−∆), the f = 1/f = 2
minima are in between. The example has sort of an XOR
structure, which is hard for many optimizers.

B. Random search

Individuals are created uniformly in the unit square. The
“local optimum” f = 3 is easy to “find”, since it occupies
nearly the whole space. The global optimum f = 4 is difficult
to find, since it occupies only ∆2 � 1 of the space. The
expected time, i.e. the expected number of individuals created
and tested until one with f = 4 is found, is TRAND = 1

∆2 .
Here and in the following, the “time” T is defined as the
expected number of created individuals until the first optimal
individual (with f = 4) is found. T is neither a takeover time
nor the number of generations (we consider steady-state EAs).

C. Random search with crossover

Let us occasionally perform a recombination of individuals
in the current population. We combine the x-coordinate of
one uniformly selected individual i1 with the y coordinate of
another individual i2. This crossover operation maintains a
uniform distribution of individuals in [0, 1]2. It leads to the
global optimum if i1 ∈ I1 and i2 ∈ I2. The probability of
selecting an individual in Ii is ∆(1 − ∆) ≈ ∆ (we assumed
that the global optimum has not yet been found). Hence, the
probability that I1 crosses with I2 is ∆2. The time to find the
global optimum by random search including crossover is still
∼ 1

∆2 (∼ denotes asymptotic proportionality).

D. Mutation

The result remains valid (to leading order in 1
∆) if, instead of

a random search, we uniformly select an individual and mutate
it according to some probabilistic, sufficiently mixing rule,
which preserves uniformity in [0, 1]. One popular such muta-
tion operator is to use a sufficiently long binary representation
of each coordinate, like in genetic algorithms, and flip a single
bit. For simplicity we assume in the following a mutation
operator which replaces with probability 1

2/ 1
2 the first/second

coordinate by a new uniform random number. Other mutation
operators which mutate with probability 1

2/ 1
2 the first/second

coordinate, preserve uniformity, are sufficiently mixing, and
leave the other coordinate unchanged (like the single-bit-flip
operator) lead to the same scaling of T with ∆ (but with
different proportionality constants).

E. Standard selection with crossover

The f = 1 and f = 2 individuals contain useful building
blocks, which could speedup the search by a suitable selection
and crossover scheme. Unfortunately, the standard selection
schemes favor individuals of higher fitness and will diminish
the f = 1/f = 2 population fraction. The probability of
selecting f = 1/f = 2 individuals is even smaller than
in random search. Hence TSTD ∼ 1

∆2 . Standard selection
does not improve performance, even not in combination with
crossover, although crossover is well suited to produce the
needed recombination.

9

F. FUSS

At the beginning, only the f = 3 level is occupied and
individuals are uniformly selected and mutated. The expected
time until an f = 1 or f = 2 individual in I1 ∪ I2 is created
is T1 ≈ 1

∆ (not 1
2∆ , since only one coordinate is mutated).

From this time on FUSS will select one half(!) of the time
the f = 1/f = 2 individual(s) and only the remaining half
the abundant f = 3 individuals. When level f = 1 and level
f = 2 are occupied, the selection probability is 1

3 + 1
3 for these

levels. With probability 1
2 the mutation operator will mutate

the y coordinate of an individual in I1 or the x coordinate of
an individual in I2 and produces a new f = 1/2/4 individual.
The relative probability of creating an f = 4 individual is ∆.
The expected time to find this global optimum from the f =
1/f = 2 individuals, hence, is T2 = [(1

2 ... 23)× 1
2 ×∆]−1. The

total expected time is TFUSS ≈ T1 + T2 = 4
∆ ... 5

∆ � 1
∆2 ∼

TSTD. FUSS is much faster by exploiting unfit f = 1/f =
2 individuals. This is an example where (local) minima can
help the search. Examples where a low local maxima can help
in finding the global maximum, but where standard selection
sweeps over too quickly to higher but useless local maxima,
can also be constructed.

G. FUSS with crossover

The expected time until an f = 1 individual in I1 and
an f = 2 individual in I2 is found is T1 ∼ 1

∆ , even
with crossover. The probability of selecting an f = 1/f =
2 individual is 1

3/ 1
3 . Thus, the probability that a crossing

operation crosses I1 with I2 is (1
3)2. The expected time to

find the global optimum from the f = 1/f = 2 individuals,
hence, is T2 = 9 ·O(1), where the O(1) factor depends on the
frequency of crossover operations. This is far faster than by
STD, even if the f = 1/f = 2 levels were local maxima, since
to get a high standard selection probability, the level has first
to be taken over, which itself needs some time depending on
the population size. In FUSS a single f = 1 and a single f = 2
individual suffice to guarantee a high selection probability
and an effective crossover. Crossover does not significantly
decrease the total time TFUSSX ≈ T1 + T2 ∼ 1

∆ + O(9), but
for a suitable 3D generalization we get a large speedup by a
factor of 1

∆ .

H. FUDS with crossover

Assume that initially all of the individuals have f = 3
and that we are using random selection. For any mutation
the probability of the child being in I1 ∪ I2 is ∆. Until
I1 ∪ I2 becomes quite full FUDS will never delete individuals
from these areas. Furthermore if an individual in I1 ∪ I2 is
mutated then the mutant will also be in I1∪I2 with probability
1
2 (1 + ∆) � ∆. Therefore while most of the population has
f = 3 we can lower bound the probability of a new child
being in I1 ∪ I2 by ∆. It then follows that if P is the size
of the population we can upper bound the expected time for
I1∪I2 to contain half the total population by P

2
1
∆ ∝ 1

∆ . Once
this occurs (and most likely well before this point) crossover
will produce an individual with f = 4 almost immediately

by crossing a member of I1 with a member of I2. Thus
TFUDS ∝ 1

∆ � 1
∆2 ∼ TSTD. This gives FUDS when used

with random selection scaling characteristics which are similar
to FUSS. If we use a selection scheme with higher intensity
our bound on the expected time for half the population to
have f = 3 remains unchanged as the bound holds in the
worst case situation where only individuals with f = 3 are
selected. However higher selection intensity makes the final
crossover required to find an individual with f = 4 less
likely. For moderate levels of selection intensity this is clearly
not a significant factor and more importantly it is O(1) and
independent of ∆. Thus the order of scaling for TFUDS is just
1
∆ for this difficult problem, which is the same as TFUSSX .

I. Simple 3D example

We generalize the 2D example to D-dimensional individuals
~x ∈ [0, 1]D and a fitness function

f(~x) := (D + 1)·
D
∏

d=1

χd(~x) − max
1≤d≤D

d·χd(~x) + D + 1,

where χd(~x) is the characteristic function of feature Id

χd(~x) :=

{

1 if ai ≤ xi ≤ ai + ∆,
0 else.

For D = 2, f coincides with the 2D example. For D = 3, the
fractions of [0, 1]3 where f = 1/2/3/4/5 are approximately
∆2/∆2/∆2/1/∆3. With the same line of reasoning we get
the following expected search times for the global optimum:

TRAND ∼ TSTD ∼ 1

∆3
,

TFUSS ∼ 1

∆2
, TFUSSX ∼ TFUDS ∼ 1

∆
.

This demonstrates the existence of problems where FUSS is
much faster than RAND and STD, and where crossover can
give a further boost to FUSS, even when it is ineffective in
combination with STD.

VIII. FITNESS-TREE ANALYSIS

A. The fitness tree model

A general, problem independent comparison of the various
optimization algorithms is difficult. We are interested in the
performance for difficult fitness landscapes with many local
optima.

We only consider mutation; recombination is discussed in
the next section. The evolutionary neighborhood (not to be
confused with d-similarity) of an individual i is defined as
the set of individuals that can be created from i by a single
mutation1. Two individuals i and j with the same fitness are
defined to belong to the same species if there is a finite
sequence of mutations which transforms i into j and all
individuals of the sequence also have fitness f(i) = f(j). Each
fitness level is partitioned in this way into disjoint species.
We say a species of fitness f + ε can evolve from a species of

1We have “small” mutations in mind, e.g. single bit flips, not macro
mutations, which connect all individuals.

10

Species C

Species A

Species B

1

2 2

3
3

3

3

4

4
4

4

5
5 5

5

6
6

Fig. 4. Generic 2D fitness landscape with evolution tree. Each connected
slice represents a species. A species is also symbolized by a node in the slice.
The number in a slice and near a node is the fitness value of the species. If
individuals from one species can evolve to individuals of another species, the
nodes are connected by a solid line. Altogether, they form the fitness tree.
The branching factor b is 2 and the number of species per fitness level s is
4 for intermediate fitness values (3,4,5).

fitness f , if there is a mutation which transforms an individual
from the latter species to one of the former. Those species are
connected by an edge in Figures 4 and 5. A species is said to
be promising if it can evolve to the global optimum fmax.

B. Additional definitions and simplifying assumptions

i) Evolution which skips fitness levels is ignored, and also
devolution to species of lower fitness other than the
primordial species.

ii) Random individuals have lowest fitness fmin with high
probability, and there is only one species of fitness fmin.

iii) There is a fixed branching factor b, i.e. each species
can evolve into b improved species, or represents a local
optimum from which no further evolution is possible.

iv) There is a single global optimum fmax (or b optima to
be consistent with the previous item).

v) There are s different species per fitness level (except
near fmin and fmax where there must be fewer to be
consistent with the previous items).

vi) The probability p that an individual evolves to a higher
fitness is very small. In most cases a mutation keeps an
individual within its species or devolves it.

vii) The probability to evolve to one of the offspring species
is uniform, i.e. 1/b for all offspring species.

We have the feeling that this picture covers the essential
features of fitness landscapes for difficult problems. The qual-
itative conclusions we will draw should still hold when some
or all of the additional simplifying assumptions are violated.

C. Example

Consider the case of individuals, which are real-valued D
dimensional vectors, i.e. I = IRD. Let the fitness function f̃
be continuous and positive with many local maxima, which
tends to zero for large arguments. This covers a large range

Fig. 5. Generic fitness function with evolution tree. Individuals which are
evolutionary neighbors are connected by a dashed line. They belong to the
species indicated by a node on the dashed line. A species which can evolve
from another is connected to it by a solid line. The smooth curve visualizes
(somewhat misleading, since the fitness is discrete) the fitness function with
many local maxima.

of physical optimization problems. Mutation shall be local in
IRD, i.e. ||ioriginal−imutated|| � D. As FUSS and the fitness
tree model is only defined for discrete fitness functions, we
discretize f̃ to f := b

1
ε̃ f̃c, which is acceptable for sufficiently

small ε̃. A typical fitness landscape for D = 2 and D =
1 together with their fitness tree are depicted in Figures 4
and 5. Since mutation is a local operation, each species is a
(possibly multiply punched) connected slice (D-dimensional
sub-volume) and evolution can only occur from f to f + 1
(ε = 1). Assumption (i) is generally satisfied. The special
fitness landscapes depicted in Figures 4 and 5 also satisfy
(ii,iii,iv,v) with b = 2 and s = 4.

D. Random walk

Consider a mutation induced random walk of a single
individual. Due to the low evolution probability p � 1, most
of the time will be spent on individuals of the lowest fitness
fmin. As evolution is a tree, there is only one evolution
sequence which leads to the global optimum. At each evolution
step, the correct offspring species (out of b) has to be evolved.
The probability of an evolution step in the right direction,
hence, is p/b. |F | evolution steps are necessary to reach fmax.
Therefore, the expected time to find the global maximum by
random walk is TRW ≈ (b/p)|F |. Random walk is very slow;
it is exponential in the number of fitness levels |F | to a very
large basis b/p.

E. FUSS

Assume that L fitness levels from fmin to f are occupied.
The probability that FUSS selects an individual of fitness f is
1/L. Under this additional assumption that the occupation of
species within one fitness level is approximately uniform most
of the time, the probability of selecting an individual of the
promising species, which can evolve to the global optimum, is

11

1/s. The probability of an evolution step in the right direction
is p/b as in the random walk case. Hence, the total expected
time for an evolution in the right direction is L·s·b/p. The total
time TFUSS ≈ 1

2 |F |2 · · · · b/p for an evolution from L = 1 to
the global optimum L = |F | is obtained by summation over
L = 1...|F |.

F. FUDS

A similar analysis can be applied to FUDS. Assume again
that the L fitness levels from fmin to f are occupied and
that the occupation of species within each fitness level is
approximately uniform most of the time. Because FUDS tends
to spread the population out, like FUSS, this assumption is not
unreasonable. As FUDS is only a deletion scheme we must
also specify a selection scheme. For our analysis we will take
a very simple elitist selection scheme that half of the time
selects an individual from the highest fitness level, and the
other half of the time selects an individual from a lower level.
It follows then that the probability of selecting a promising
species is 1/2s and the probability that this then results in an
evolutionary step in the right direction is p/b. Thus the total
expected time for an evolutionary step in the right direction is
2 · s · b/p. Therefore by summation the total expected time to
evolve to the global optimum is TFUDS ≈ 2|F | · s · b/p. Of
course this analysis rests on our choice of selection scheme and
the assumptions about the uniformity of the population that we
have made. When FUDS is used with selection schemes which
are very greedy these uniformity assumptions will likely be
violated and less favorable bounds could result.

G. Standard selection

We assumed a fixed number of s species per fitness level and
0 or b offspring species. This implies that only a fraction of
1/b species can evolve to higher fitness. We assume that fitness
level f has been taken over, i.e. most individuals have fitness
f . The probability of evolution is p. A significant fraction (for
simplicity we assume most) of the |P | individuals must evolve
to the next fitness level before evolution with a relevant rate
can occur to the next to next level. Hence, the time to take
over the next fitness level is roughly |P | · b/p. As there are
|F | fitness levels, the total time is TSTD

>∼|F | · |P | · b/p.
We wrote >∼ as we have made two significant favorable

assumptions. In order to ensure convergence, the promising
species in the current fitness level has to be occupied. If we
assume a uniform occupation of species within one fitness
level, as for FUSS, this means that all species of the current
fitness level have to be populated. As there are s species, |P |
has to be at least s, which can be quite large. On the other
hand, STD linearly slows down with |P |, unlike FUSS. Hence,
there is a trade-off in the choice of |P |.

More serious is the following problem. Assume that the first
individual evolved with fitness f +ε is one in a non-promising
species a. Due to selection pressure it might happen that
species a takes over the whole population before all (or at least
the promising) species with fitness f + ε can evolve from the
ones of fitness f . The probability to find the global optimum in
the worst case scenario, where at each level only one species

is occupied, is (1/b)|F |. This is the original problem of the
loss of genetic diversity discussed at the outset, which lead to
the invention of FUSS.

Every other fix the author is aware of only seems to diminish
the problem, but does not solve it. One fix is to repeatedly
restart the EA, but the huge number of b|F | restarts might
be necessary. The time is exponential in |F | like for random
walk but with a smaller basis b. The true time is expected to
be somewhere in between |F | · |P | · b/p and this worst case
analysis, although an unfavorable setting may never reach the
global optimum (TSTD = ∞ in this case).

H. Performance comparison

The times TFUSS , TFUDS and TSTD should be regarded, at
best, as rules of thumb, since the derivation was rather heuristic
due to the list of assumptions. The quotient is more reliable:

TFUSS

TSTD

<∼
|F |·s
2|P |

<∼
1
2 |F | ≤ |F |,

and
TFUDS

TSTD
≈ s

|P | ≈ 1.

We will give a more direct argument in Section IX that the
slowdown of FUSS relative to STD is at most |F |.

Finally, a truism has been recovered, namely that an EA
can, under certain circumstances, be much faster than random
walk, that is, TRW � TFUSS , TFUDS , TSTD.

IX. SCALE-INDEPENDENT SELECTION AND

RECOMBINATION

A. Worst case analysis

We now want to estimate the maximal possible slowdown
of FUSS compared to STD. Let us assume that all individuals
in STD have fitness f , and once one individual with fitness
f + ε has been found, takeover of level f + ε is quick.
Let us assume that this quick takeover is actually good (e.g.
if there are no local maxima). The selection probability of
individuals of same fitness is equal. For FUSS we assume
individuals in the range of fmin and f . Uniformity is not
necessary. In the worst case, a selection of an individual of
fitness < f never leads to an individual of fitness ≥ f , i.e.
is always useless. The probability of selecting an individual
with fitness f is ≥ 1

|F | . At least every |F |th FUSS selection
corresponds to a STD selection. Hence, we expect a maximal
slowdown by a factor of |F |, since FUSS “simulates” STD
statistically every |F |th selection. It is possible to construct
problems where this slowdown occurs (unimodal function,
local mutation x → x ± ε, no crossover). Gradient ascent
would be the algorithm of choice in this case. On the other
hand, we have not observed this slowdown in our simple 2D
example and the TSP experiments, where FUSS outperformed
STD in solution quality/time (see the experimental results in
Section XII). Since real world problems often lie in between
these extreme cases it is desirable to modify FUSS to cope
with simple problems as well, without destroying its advan-
tages for complex objective functions.

12

B. Quadratic slowdown due to recombination

We have seen that TFUSS ≤ |F | ·TSTD. In the presence of
recombination, a pair of individuals has to be selected. The
probability that FUSS selects two individuals with fitness f is
≥ 1

|F |2 . Hence, in the worst case, there could be a slowdown
by a factor of |F |2 — for independent selection we expect
TFUSS ≤ |F |2 ·TSTD. This potential quadratic slowdown can
be avoided by selecting one fitness value at random, and then
two individuals of this single fitness value. For this dependent
selection, we expect TFUSS ≤ |F | · TSTD. On the other
hand, crossing two individuals of different fitness can also
be advantageous, like the crossing of f = 1 with f = 2
individuals in the 2D example of Section VII.

C. Scale independent selection

A near optimal compromise is possible: a high selection
probability p(f) ∼ 1 if f ≈ fmax and p(f) ∼ 1

|F | other-
wise. A “scale independent” probability distribution p(f) ∼

1
|fmax−f | is appropriate for this. We define

p(f) :=
c

ln |F | ·
1

1
ε |fmax − f | + 1

. (1)

The +1 in the denominator has been added to regularize the
expression for f = fmax. The factor c/ ln |F | ensures correct
normalization (

∑

f p(f) = 1). By using ln b+1
a ≤ ∑b

i=a
1
i ≤

ln b
a−1 , one can show that ln |F |

1+ln |F | ≤ c ≤ 1 i.e. c → 1 for
|F | → ∞. In the following we assume |F | ≥ 3, i.e. c ≥ 1

2 .
Apart from a minor additional logarithmic suppression of order
ln |F | we have the desired behavior p(f) ∼ 1 for f ≈ fmax

and p(f) ∼ 1
|F | otherwise:

p(fmax − mε) ≥ 1

2 ln |F | ·
1

m + 1
,

p(f) ≥ 1

2 ln |F | ·
1

|F | ∀ f

During optimization, the minimal/maximal fitness of an indi-
vidual in population Pt is f t

min/max. In the definition of p

one has to use Ft := {f t
min, f t

min + ε, ..., f t
max} instead of

F , i.e. |F | replaced with |Ft| = 1
ε (f t

max − f t
min) + 1 ≤ |F |.

So (1) can not be achieved by a static re-parametrization of
fitness f replaced with g(f). Furthermore the important idea of
sampling from a fitness level instead of individuals directly is
still maintained. The only difference now is that the population
will no longer converge to a fitness uniform one but to one
with distribution p(f) which is biased toward higher fitness
but still never converges to a fittest individual. In the worst
case, we expect a small slowdown of the order of ln |F | as
compared to FUSS, as well as compared to STD.

D. Scale independent pair selection

It is possible to (nearly) have the best of independent and de-
pendent selection: a high selection probability p(f, f ′) ∼ 1

|F | if
f ≈ f ′ and p(f, f ′) ∼ 1

|F |2 otherwise, with uniform marginal
p(f) = 1

|F | . The idea is to use a strongly correlated joint
distribution for selecting a fitness pair. A “scale independent”

probability distribution p(f, f ′) ∼ 1
|f−f ′| is appropriate. We

define the joint probability p̃(f, f ′) of selecting two individuals
of fitness f and f ′ and the marginal p̃(f) as

p̃(f, f ′) :=
1

2|F | ln |F | ·
1

1
ε |f−f ′| + 1

, (2)

p̃(f) :=
∑

f ′∈F

p̃(f, f ′) =
∑

f ′∈F

p̃(f ′, f).

We assume |F | ≥ 3 in the following. The +1 in the denom-
inator has been added to regularize the expression for f = f ′.
The factor (2|F | ln |F |)−1 ensures correct normalization for
|F | → ∞. More precisely, using ln b+1

a ≤ ∑b
i=a

1
i ≤ ln b

a−1 ,
one can show that

1 − 1
ln |F | ≤

∑

f,f ′∈F

p̃(f, f ′) ≤ 1, 1
2 ≤ |F |·p̃(f) ≤ 1,

i.e. p̃ is not strictly normalized to 1 and the marginal p̃(f)
is only approximately (within a factor of 2) uniform. The
first defect can be corrected by appropriately increasing the
diagonal probabilities p̃(f, f). This also solves the second
problem.

p(f, f ′) :=

{

p̃(f, f ′) for f 6= f ′

p̃(f, f ′) + [1
|F | − p̃(f)] for f = f ′ (3)

E. Properties of p(f, f ′)

p is normalized to 1 with uniform marginal

p(f) :=
∑

f ′∈F

p(f, f ′) =
1

|F | ,

∑

f,f ′∈F

p(f, f ′) =
∑

f∈F

p(f) = 1,

p(f, f ′) ≥ p̃(f, f ′).

Apart from a minor additional logarithmic suppression of order
ln |F | we have the desired behavior p(f, f ′) ∼ 1

|F | for f ≈ f ′

and p(f, f ′) ∼ 1
|F |2 otherwise:

p(f, f ± mε) ≥ 1

2 ln |F | ·
1

m + 1
· 1

|F | ,

p(f, f ′) ≥ 1

2 ln |F | ·
1

|F |2 .

During optimization, the minimal/maximal fitness of an indi-
vidual in population Pt is f t

min/max. In the definition of p one
has to use Ft := {f t

min, f t
min + ε, ..., f t

max} instead of F , i.e.
|F | replaced with L := |Ft| = 1

ε (f t
max − f t

min) + 1 ≤ |F |.

F. Scale-Independent Deletion

Just as the selection scheme FUSS has its dual in the
deletion scheme FUDS, we can likewise create the dual of
Scale-Independent Selection in the form of Scale-Independent
Deletion. Thus rather than targeting deletion from the popula-
tion so that the distribution becomes flat, as we do with FUDS,
we now define a convex curve g which is peaked at the fittest
individual in the population and delete the population down
so that it follows the shape of this curve. This retains some of

13

the advantages of FUDS, for example the population cannot
collapse to just a few fitness levels, and yet it recognizes
that for many problems it is useful to bias the population
distribution toward fit individuals. Of course such problems
are less deceptive than the kind that FUSS and FUDS are
intended for.

X. CONTINUOUS FITNESS FUNCTIONS

A. Effective discretization scale

Up to now we have considered a discrete valued fitness
function with values in F = {fmin, fmin + ε, ..., fmax}. In
many practical problems, the fitness function is continuous
valued with F = [fmin, fmax]. We generalize FUSS, and some
of the discussion of the previous sections to the continuous
case by replacing the discretization scale ε by an effective
(time-dependent) discretization scale ε̂. By construction, FUSS
shifts the population toward a more uniform one. Although
the fitness values are no longer equi-spaced, they still form
a discrete set for finite population P . For a fitness uniform
distribution, the average distance between (fitness) neighboring
individuals is 1

|Pt|−1 (f t
max − f t

min) =: ε̂. We define F̂t :=

{f t
min, f t

min+ ε̂, ..., f t
max}. |F̂t| = 1

ε̂ (f t
max−f t

min)+1 = |Pt|.

B. FUSS

Fitness uniform selection for a continuous valued function
has already been mentioned in Section III. We just take a uni-
form random fitness f in the interval [f t

min − 1
2 ε̂, f t

max + 1
2 ε̂].

Independent and dependent fitness pair selection as described
in the last section works analogously. An ε̂ = 0 version of
correlated selection does not exist; a non-zero ε̂ is important.
A discrete pair (f, f ′) is drawn with probability p(f, f ′) as
defined in (2) and (3) with ε and F replaced by ε̂ and
F̂t. The additional suppression ln |F̂ | = ln |Pt| is small for
all practically realizable population sizes. In all cases an
individual with fitness nearest to f (f ′) is selected from the
population P (randomly if there is more than one nearest
individual).

If we assume a fitness uniform distribution then our worst
case bound of TFUSS

<∼
∑TST D

t=1 |Pt| is plausible, since the
probability of selecting the best individual is approximately
|Pt|. For constant population size we get a bound TFUSS

<∼|P |·
TSTD. For the preferred non-deletion case with population
size |Pt| = t the bound gets much worse TFUSS

<∼
1
2T 2

STD.
This possible (but not necessary!) slowdown has similarities
to the slowdown problems of proportionate selection in later
optimization stages. The species definition in Section VIII has
to be relaxed by allowing mutation sequences of individuals
with ε̂-similar fitness. Larger choices of ε̂ may be favorable if
the standard choice causes problems.

C. FUDS

Fitness uniform deletion already requires the range of the
fitness function to be broken up into a finite number of inter-
vals. While for discrete valued fitness functions the intervals
may correspond to the unique values of the fitness function,
this is not a requirement. Indeed if the population is small

and the fitness function has a large number of possible values
then a more coarse discretization is necessary. Continuous
valued fitness functions can therefore be treated in exactly
the same way and do not cause any special problems. In fact
they are slightly simpler in that we are now free to choose
the discretization as fine as we like without being limited by
the number of possible fitness values. Of course, like in the
discrete case, we still must choose a discretization which is
appropriate given the size of the population.

XI. THE EA TEST SYSTEM

To test FUSS and FUDS we have implemented an EA test
system in Java. The complete source code along with the test
problems presented in this paper and basic usage instructions
can be downloaded from [24]. The EA model we have chosen
for our tests is the so called “steady state” model as opposed
to the more usual “generational” model. In a generational
EA in each generation we select an entirely new population
based on the old population. The old population is then simply
discarded. Under the steady state model that we use, each step
of the optimization adds and removes just one individual at
a time. Specifically the process occurs as follows: Firstly an
individual is selected by the selection scheme and then with
a certain probability another individual is also selected and
the crossover operator is applied to produce a new individual.
Then with another probability a mutation operator is applied
to produce the child individual which is then added to the
population. We refer to the probability of crossing as the
crossover probability and the probability of mutating following
a crossover as the mutation probability. In the case where
no crossover takes place the individual is always mutated to
ensure that we are not simply adding a clone of an existing
individual into the population. Finally, an individual must be
deleted in order to keep the population size constant. This
individual is selected by the deletion scheme. The deletion
scheme is important as it has the power to bias the population
in a similar way to the selection scheme.

Our task in this paper is to experimentally analyze how
FUSS performs relative to other selection schemes and how
FUDS performs relative to other deletion schemes. Because
any particular run of a steady state EA requires both a selection
and a deletion scheme to be used, there are many possible
combinations that we could test. We have narrowed this range
of possibilities down to just a few that are commonly used.

Among the selection schemes, tournament selection is one
of the simplest and most commonly used and we consider
it to be roughly representative of other standard selection
schemes which favor the fitter individuals in the population;
indeed in the case of tournament size 2 it can be shown
that tournament selection is equivalent to the linear ranking
selection scheme [25, Sec.2.2.4]. With tournament selection
we randomly pick a group of individuals and then select
the fittest individual from this group. The size of the group
is called the tournament size and it is clear that the larger
this group is the more likely we are to select a highly fit
individual from the population. At some point in the future we
may implement other standard selection schemes to broaden

14

our comparison, however we expect the performance of these
schemes to be at best comparable to tournament selection
when used with a correctly tuned selection intensity.

Among the deletion schemes one of the most commonly
used in steady state EAs is random deletion. The rational for
this is that it is neutral in the sense that it does not skew the
distribution of the population in any way. Thus whether the
population tends toward high or low fitness etc. is solely a
function of the selection scheme and its settings. Of course
random deletion, unlike FUDS, makes no effort to preserve
diversity in the population as all individuals have an equal
chance of being removed. In this paper we will compare
FUDS against random deletion as this is the standard deletion
schemes in situations where it is difficult or impossible to
directly measure the similarity of individuals based on their
genomes.

When reporting test results we will adopt the following
notation: TOUR2 means tournament selection with a tourna-
ment size of 2. Similarly for TOUR3, TOUR4 and so on.
Under random selection, denoted RAND, all members of
the population have an equal probability of being selected.
This is sometimes called uniform selection. When a graph
shows the performance of tournament selection over a range
of tournament sizes we will simply write TOURx. Naturally
FUSS indicates the fitness uniform selection scheme. To
indicate the deletion scheme used we will add either the suffix
-R or -F to indicate random deletion or FUDS respectively.
Thus, TOUR10-R is tournament selection with a tournament
size of 10 used with random deletion, while FUSS-F is FUSS
selection used with FUDS deletion.

The important free parameters to set for each test are the
population size, and the crossover and mutation probabilities.
Good values for the crossover and mutation probabilities
depend on the problem and must be manually tuned based on
experience as there are few theoretical guidelines on how to
do this. For some problems performance can be quite sensitive
to these values while for others they are less important. Our
default values are 0.5 for both as this has often provided us
with reasonable performance in the past.

For each test we ran the system multiple times with the same
mutation and crossover probabilities and the same population
size. The only difference was which selection and deletion
schemes were used by the code. Thus even if our various
parameters, mutation operators etc. were not optimal for a
given problem, the comparison is still fair. Indeed we often
deliberately set the optimization parameters to non-optimal
values in order to compare the robustness of the systems.

As a steady state optimizer operates on just one individual
at a time, the number of cycles within a given run can be high,
perhaps 100,000 or more. In order to make our results more
comparable to a generational optimizer we divide this number
by the size of the population to give the approximate number
of generations. Unfortunately the theoretical understanding
of the relationship between steady state and generational
optimizers is not strong. It has been shown that under the
assumption of no crossover the effective selection intensity
using tournament selection with size 2 is approximately twice
as strong under a steady state EA as it is with a generational

EA [26]. As far as we are aware a similar comparison for
systems with crossover has not been performed.

Depending on the purpose of a test run, different stopping
criteria were applied. For example, in situations where we
wanted to graph how rapidly different strategies converged
with respect to generations, it made sense to fix the number of
generations. In other situations we wanted to stop a run once
the optimizer appeared to have become stuck, that is, when
the maximum fitness had not improved after some specified
number of generations. In any case we explain for each test
the stopping criterion that has been used.

In order to generate reliable statistics we ran each test multi-
ple times; typically 30 times but sometimes up to 100 times if
the results were noisy. From these runs we then calculated the
mean performance as well as the sample standard deviation
and from this the standard error in our estimate of the mean.
This value was then used to generate the 95% confidence
intervals which appear as error bars on the graphs.

XII. A DECEPTIVE 2D PROBLEM

The first problem we examine is the simple but highly
deceptive 2D optimization problem which was theoretically
analyzed in Section VII. As in the theoretical analysis, we set
up the mutation operator to randomly replace either the x or
y position of an individual and the crossover to take the x
position from one individual and the y position from another
to produce an offspring. The size of the domain for which the
function is maximized is just δ2 which is very small for small
values of δ, while the local maxima at fitness level 3 covers
most of the space. Clearly the only way to reach the global
maximum is by leaving this local maximum and exploring
the space of individuals with lower fitness values of 1 or 2.
Thus, with respect to the mutation and crossover operators we
have defined, this is a deceptive optimization problem as these
partitions mislead the EA [27].

For this test we set the maximum population size to 1,000
and made 20 runs for each δ value. With a steady state EA it
is usual to start with a full population of random individuals.
However for this particular problem we reduced the initial
population size down to just 10 in order to avoid the effect
of doing a large random search when we created the initial
population and thereby distorting the scaling. Usually this
might create difficulties due to the poor genetic diversity
in the initial population. However due to the fact that any
individual can mutate to any other in just two steps this is
not a problem in this situation. Initial tests indicated that
reducing the crossover probability from 0.5 to 0.25 improved
the performance slightly and so we have used the latter value.

The first set of results for the selection schemes used with
random deletion appear in the left graph of Figure 6. As ex-
pected, higher selection intensity is a significant disadvantage
for this problem. Indeed even with just a tournament size of
3 the number of generations required to find the maximum
became infeasible to compute for smaller values of δ. Our
results confirm the theoretical scaling orders of 1

δ2 for TOUR2-
R, and 1

δ for FUSS-R, as predicted in Section VII. Be aware
that this is a log-log scaled graph and so the different slopes
indicate significantly different orders of scaling.

15

0.010.1
Delta

0.01

0.1

1

10

100

1000

10000

G
en

er
at

io
ns

 T
o

Fi
nd

 M
ax

TOUR3-R
TOUR2-R
RAND-R
FUSS-R

Deceptive 2D - Random Deletion

0.010.1
Delta

0.01

0.1

1

10

100

1000

10000

G
en

er
at

io
ns

 T
o

Fi
nd

 M
ax

TOUR3-F
TOUR2-F
RAND-F
FUSS-F

Deceptive 2D - FUDS

Fig. 6. With random deletion (left graph) FUSS significantly outperforms TOURx and RAND. By switching to FUDS (right graph) the performance of
TOURx and RAND now scale the same as FUSS.

In the second set of tests we switch from random deletion
to FUDS. These results appear in the right graph of Figure 6.
We see that with FUDS as the deletion scheme the scaling
improves dramatically for RAND, TOUR2 and TOUR3. In-
deed they are now of the same order 1

δ as FUSS, as predicted
in Section VII. This shows that for very deceptive problems
much higher levels of selection intensity can be applied when
using FUDS rather than random deletion. The performance
of FUSS-R is very similar to that of FUSS-F. This is not
surprising as the population distribution under FUSS already
tends to be approximately uniform across fitness levels and
thus we expect the effect of FUDS to be quite weak.

Although this problem was artificially constructed, the re-
sults clearly demonstrate how FUSS and FUDS can dramati-
cally improve performance in some situations.

XIII. TRAVELING SALESMAN PROBLEM

A well known optimization problem is the so called Travel-
ing Salesman Problem (TSP). The task is to find the shortest
Hamiltonian cycle (path) in a graph of N vertexes (cities)
connected by edges of certain lengths. There exist highly
specialized population based optimizers which use advanced
mutation and crossover operators and are capable of finding
paths less than one percent longer than the optimal path for up
to 107 cities [28], [29], [30], [31]. As our goal is only to study
the relative performance of selection and deletion schemes,
having a highly refined implementation is not important. Thus
the mutation and crossover operators we used were quite
simple: Mutation was achieved by just switching the position
of two of the cities in the solution, while for crossover we
used the partial mapped crossover technique [32]. Fitness was
computed by taking the reciprocal of the tour length.

For our first set of tests we used randomly generated TSP
problems, that is, the distance between any two cities was
chosen uniformly from the unit interval [0, 1]. We chose this
as it is known to be a particularly deceptive form of the TSP
problem as the usual triangle inequality relation does not hold

in general. For example, the distance between cities A and B
might be 0.1, between cities B and C 0.2, and yet the distance
between A and C might be 0.8. The problem still has some
structure though as efficient partial solutions tend to be useful
building blocks for efficient complete tours.

For this test we used random distance TSP problems with 20
cities and a population size of 1000. We found that changing
the crossover and mutation probabilities did not improve
performance and so these have been left at their default values
of 0.5. Our stopping criterion was simply to let the EA run
for 300 generations as this appeared to be adequate for all
of the methods to converge and allowed us to easily graph
performance versus generations.

The first graph in Figure 7 shows each of the selection
schemes used with random deletion. We see that TOUR3-R
has insufficient selection intensity for adequate convergence
while TOUR12-R quickly converges to a local optimum and
then becomes stuck. TOUR6-R has about the correct level of
selection intensity for this problem and population size. FUSS-
R however initially converges as rapidly as TOUR12-R but
avoids becoming stuck in local optima. This suggests improved
population diversity. The performance curve for FUSS-R is
impressive, especially considering that it is parameterless.

At first it might seem surprising that the maximum fitness
with FUSS climbs very quickly for the first 20 generations,
especially considering that FUSS makes no attempt to increase
the average fitness in the population. However we can explain
this very rapid rise in solution fitness by considering a simple
example. Consider a situation where there is a large number
of individuals in a small band of fitness levels, say 1,000 with
fitness values ranging from 50 to 70. Add to this population
one individual with a fitness value of 73. Thus the total fitness
range contains 24 values. Whenever FUSS picks a random
point from 72 to 73 inclusive this single individual with
maximal fitness will be selected. That is, the probability that
the single fittest individual will be selected is 2/24 = 0.083.
In comparison under TOUR12 the probability that the fittest

16

0 50 100 150 200 250 300
Generations

2.0

2.5

3.0

3.5

4.0

4.5

T
ou

r
L

en
gt

h

TOUR12-R
TOUR6-R
TOUR3-R
FUSS-R

Random TSP - Random Deletion

0 50 100 150 200 250 300
Generations

2.0

2.5

3.0

3.5

4.0

4.5

T
ou

r
L

en
gt

h

TOUR12-F
TOUR6-F
TOUR3-F
FUSS-F

Random TSP - FUDS

Fig. 7. TOUR3-R converged too slowly while TOUR12-R converged prematurely and became stuck. TOUR6-R appears to be about the correct tournament
size for this problem, however it is still inferior to FUSS-R. With FUDS all of the selection schemes performed well though FUSS was still the best.

individual is selected is the same as the probability that it is
picked for the sample of 12 elements used for the tournament,
which is approximately, 12/1000 = 0.012. Thus the probability
of the fittest individual in the population being selected is
higher under FUSS than under TOUR12 and so the maximum
fitness would rise quickly to start with.

Previously in [21] we speculated that this may have been
responsible for performance problems that we had observed
with FUSS in some situations. However further experimenta-
tion has shown that very rapid rises in maximal fitness are
quite rare and are also very shortly lived when they do occur
— too short to cause any significant diversity problems in the
population. We now believe that the population distribution is
to blame in these situations; something that we will explore
in detail in Section XV.

The second graph in Figure 7 shows the same set of se-
lection schemes but now using FUDS as the deletion scheme.
With FUDS the performance of all of the selection schemes
either stayed the same or improved. In the case of TOUR3 the
improvement was dramatic and for TOUR12 the improvement
was also quite significant. This is interesting because it shows
that with fitness uniform deletion, performance can improve
when the selection intensity is either too high or too low.
That is, when using FUDS the performance of the EA now
appears to be more robust with respect to variation in selection
intensity.

In the case of TOUR12-F this is evidence of improved
population diversity as the EA is no longer becoming stuck.
However for TOUR3-R the selection intensity is quite low and
thus we would expect the population diversity to be relatively
good. Thus the fact that TOUR3-F was so much better than
TOUR3-R suggests that FUDS can have significant perfor-
mance benefits that are not related to improved population
diversity.

Investigating further it seems that this effect is due to
the way that FUDS focuses the deletion on the large mass
of individuals which have an average level of fitness while

completely leaving the less common fit individuals alone. This
helps a system with very weak selection intensity move the
mass of the population up through the fitness space. With
higher selection intensity this problem tends not to occur as
individuals in this central mass are less likely to be selected
thus reducing the rate at which new individuals of average
fitness are added to the population.

In order to better understand how stable FUDS performance
is when used with different selection intensities we ran another
set of tests on random TSP problems with 20 cities and
graphed how performance varied by tournament size. For these
tests we set the EA to stop each run when no improvement
had occurred in 40 generations. We also tested on a range of
population sizes: 250, 500, 1000 and 5000. The results appear
in Figure 8.

In these graphs we can now clearly see how the performance
of TOURx-R varies significantly with tournament size. Below
the optimal tournament size performance worsened quickly
while above this value it also worsened, though more slowly.
Interestingly, with a population size of 5000 the optimal
tournament size was about 6, while with small populations
the optimal value fell to just 4. Presumably this was partly
because smaller populations have lower diversity and thus
cannot withstand as much selection intensity.

In contrast FUSS-R and FUSS-F appear as horizontal lines
as they do not have a tournament size parameter. We see that
they have performed as well as the optimal performance of
TOURx-R without requiring any tuning. Indeed for larger pop-
ulations FUSS-R appears to be even better than the optimally
tuned performance of TOURx-R. This is a very positive result
for the parameterless FUSS.

Comparing FUDS with random deletion we also see im-
pressive results. For every combination of selection scheme,
tournament size and population size the result with FUDS was
better than the corresponding result with random deletion, and
in some cases much better. Furthermore these graphs clearly
display the improved robustness of tournament selection with

17

2 4 6 8 10 12
Tournament Size

2.0

2.5

3.0

3.5

4.0

T
ou

r
L

en
gt

h

FUSS-R
FUSS-F
TOURx-R
TOURx-F

Random TSP Population 250

2 4 6 8 10 12
Tournament Size

2.0

2.5

3.0

3.5

4.0

T
ou

r
L

en
gt

h

FUSS-R
FUSS-F
TOURx-R
TOURx-F

Random TSP Population 500

2 4 6 8 10 12
Tournament Size

2.0

2.5

3.0

3.5

4.0

T
ou

r
L

en
gt

h

FUSS-R
FUSS-F
TOURx-R
TOURx-F

Random TSP Population 1000

2 4 6 8 10 12
Tournament Size

2.0

2.5

3.0

3.5

4.0

T
ou

r
L

en
gt

h
FUSS-R
FUSS-F
TOURx-R
TOURx-F

Random TSP Population 5000

Fig. 8. The performance of TOURx-F is much more stable than TOURx-R under variation in the selection intensity. Also both FUSS-R and FUSS-F produce
very good results, especially with the larger populations.

FUDS as TOURx-F produced near optimal results for all tour-
nament sizes. Even with an optimally tuned tournament size
FUDS increased performance, particularly with the smaller
populations. Indeed for each population size tested the worst
performance of TOURx-F was equal to the best performance
of TOURx-R.

With FUSS there was also a performance advantage when
using FUDS, again more so with the smaller populations. The
combination of both FUSS and FUDS was especially effective
as can be seen by the consistently superior performance of
FUSS-F across all of the graphs.

More tests were run exploring performance with up to 100
cities. Although the performance of FUDS remained stronger
than random deletion for very low selection intensity, for high
selection intensity the two were equal. We believe that the
reason for this is the following: When the space of potential
solutions is very large finding anything close to a global
optimum is practically impossible, indeed it is difficult to even

find the top of a reasonable local optimum as the space has
so many dimensions. In these situations it is more important
to put effort into simply climbing in the space rather than
spreading out and trying to thoroughly explore. Thus higher
selection intensity can be an advantage for large problem
spaces. At any rate, for large problems and with high selection
intensity FUDS did not appear to hinder the performance,
while with low selection intensity it continued to significantly
improve it.

Experiments were also performed using the more efficient
“2-Opt” mutation operator. As expected, this increased perfor-
mance and allowed much higher selection pressure to be used.
Of course the problem then no longer had the kind of deceptive
structure that heavily punishes high selection pressure that we
are looking for. Nevertheless, FUDS continued to significantly
boost the performance of tournament selection, in particular
when the tournament size was too small.

18

2 4 6 8 10 12
Tournament Size

550

600

650

700

750

So
lu

tio
n

C
os

t

FUSS-R
FUSS-F
TOURx-R
TOURx-F

SCP42 Population 250

2 4 6 8 10 12
Tournament Size

540

560

580

600

620

So
lu

tio
n

C
os

t

FUSS-R
FUSS-F
TOURx-R
TOURx-F

SCP42 Population 500

2 4 6 8 10 12
Tournament Size

540

550

560

570

580

590

So
lu

tio
n

C
os

t

FUSS-R
FUSS-F
TOURx-R
TOURx-F

SCP42 Population 1000

2 4 6 8 10 12
Tournament Size

540

550

560

570

580

So
lu

tio
n

C
os

t
FUSS-R
FUSS-F
TOURx-R
TOURx-F

SCP42 Population 5000

Fig. 9. The performance of FUSS for the two smaller populations was relatively poor, while for the larger populations it matched the optimal performance
of TOURx-R. FUDS again produced superior results to random deletion in all situations tested.

XIV. SET COVERING PROBLEM

The set covering problem (SCP) is a reasonably well known
NP-complete optimization problem with many real world
applications. Let M ∈ {0, 1}m×n be a binary valued matrix
and let cj > 0 for j ∈ {1, . . . n} be the cost of column j. The
goal is to find a subset of the columns such that the cost is
minimized. Define xj = 1 if column j is in our solution and
0 otherwise. We can then express the cost of this solution as
∑n

j=1 cjxj subject to the condition that
∑n

j=1 mijxj ≥ 1 for
i ∈ {1, . . . m}.

Our system of representation, mutation operators and
crossover follow that used by Beasley [33] and we compute
the fitness by taking the reciprocal of the cost. The results
presented here are based on the “scp42” problem from a
standard collection of SCP problems [34]. The results obtained
on other problems in this test set were similar. We found
that increasing the crossover probability and reducing the
mutation probability improved performance, especially when

the selection intensity was low. Thus we have tested the system
with a crossover probability of 0.8 and a mutation probability
of 0.2. We performed each test at least 50 times in order
to minimize the error bars. Our stopping criterion was to
terminate each run after no improvement in minimal cost had
occurred for 40 generations. The results for this test appear in
Figure 9.

Similar to the TSP graphs we again see the importance
of correctly tuning the tournament size with TOURx-R. We
also see the optimal range of performance for TOURx-R
moving to the right as the population sizes increases. This
is what we would expect due to the greater diversity in larger
populations. This kind of variability is one of the reasons why
the selection intensity parameter usually has to be determined
by experimentation.

Unlike with TSP however, the performance of FUSS was
less convincing in these results. With the smaller populations
of 250 and 500 FUSS-R was only better than TOURx-R

19

2 4 6 8 10 12
Tournament Size

610

620

630

640

C
la

us
es

 S
at

is
fi

ed

FUSS-R
FUSS-F
TOURx-R
TOURx-F

CNF3 SAT150 Population 500

2 4 6 8 10 12
Tournament Size

630

635

640

645

C
la

us
es

 S
at

is
fi

ed

FUSS-R
FUSS-F
TOURx-R
TOURx-F

CNF3 SAT150 Population 5000

Fig. 10. With low selection intensity TOURx-F performed slightly below TOURx-R, but was otherwise comparable. FUSS had serious difficulties.

when the tournament size was very low or very high. With
the larger populations of 1,000 and 5,000 the results were
much better with FUSS-R performing as well as the optimal
performance of TOURx-R. FUSS-F performed better than
FUSS-R, in particular with the smaller populations though this
improvement was still insufficient for it to match the optimal
performance of TOURx-R in these cases. The fact that the
performance of FUSS varied by population size suggests that
FUSS might be experiencing some kind of population diversity
problem. We will look more carefully at diversity issues in the
next section.

With FUDS the results were again very impressive. As with
the TSP tests; for all combinations of selection scheme, tourna-
ment size and population size that we tested, the performance
with FUDS was superior to the corresponding performance
with random deletion. This was true even when the tournament
size was optimal. While the performance of TOURx-F did
vary significantly with different tournament sizes, the results
were more robust than TOURx-R, especially with the larger
populations. Indeed for the larger two populations we again
have a situation where the worst performance of TOURx-F is
equal to the optimal performance of TOURx-R.

XV. MAXIMUM CNF3 SAT

Maximum CNF3 SAT is a well known NP hard optimization
problem [35] that has been extensively studied. A three literal
conjunctive normal form (CNF) logical equation is a boolean
equation that consists of a conjunction of clauses where each
clause contains a disjunction of three literals. So for example,
(a∨ b∨¬c)∧ (a∨¬e∨ f) is a CNF3 expression. The goal in
the maximum CNF3 SAT problem is to find an instantiation
of the variables such that the maximum number of clauses
evaluate to true. Thus for the above equation if a = F , b = T ,
c = T , e = T , and f = F then just one clause evaluates to
true and thus this instantiation gets a score of one. Achieving
significant results in this area would be difficult and this is
not our aim; we are simply using this problem as a test to
compare selection and deletion schemes.

Our test problems have been taken from the SATLIB collec-
tion of SAT benchmark tests [36]. The first test was performed
on the full set of 100 instances of randomly generated CNF3
formula with 150 variables and 645 clauses, all of which are
known to be satisfiable. Based on test results the crossover
and mutation probabilities were left at the default values.
Our mutation operator simply flips one boolean variable and
the crossover operator forms a new individual by randomly
selecting for each variable which parent’s state to take. Fitness
was simply taken to be the number of classes satisfied. Again
we tested across a range of tournament sizes and population
sizes. The results of these tests appear in Figure 10.

We have shown only the population sizes of 500 and 5,000
as the other population sizes tested followed the same pattern.
Interestingly for this problem there was no evidence of better
performance with FUDS at higher selection intensities. Nor
for that matter was there the decline in performance with
TOURx-R that we have seen elsewhere. Indeed with random
deletion the selection intensity appeared to have no impact
on performance at all. While SAT3 CNF is an NP hard
optimization problem, this lack of dependence of our selection
intensity parameter suggests that it may not have the deceptive
structure that FUSS and FUDS are designed for.

With low selection intensity FUDS caused performance to
fall below that of random deletion; something that we have
not seen before. Because the advantages of FUDS have been
more apparent with low populations in other test problems,
we also tested the system with a population size of only
150. Unfortunately no interesting changes in behavior were
observed.

While FUDS had minor difficulties, FUSS had serious
problems for all the population sizes that we tested. We
suspected that the uniform nature of the population distribution
that should occur with both FUSS and FUDS might be to
blame as we only expect this to be a benefit for very deceptive
problems which are sensitive to the tuning of the selection
intensity parameter. Thus we ran the EA with a population

20

460 480 500 520 540 560 580 600 620 640
Clauses Satisfied

0

200

400

600

800

1000

Po
pu

la
tio

n
CNF TOUR4-R Population Distribution

460 480 500 520 540 560 580 600 620 640
Clauses Satisfied

0

200

400

600

800

1000

Po
pu

la
tio

n

CNF TOUR4-F Population Distribution

460 480 500 520 540 560 580 600 620 640
Clauses Satisfied

0

200

400

600

800

1000

Po
pu

la
tio

n

CNF FUSS-R Population Distribution

460 480 500 520 540 560 580 600 620 640
Clauses Satisfied

0

200

400

600

800

1000

Po
pu

la
tio

n

CNF FUSS-F Population Distribution

Fig. 11. With TOUR4-R the population collapses to a narrow band of fitness levels while with TOUR4-F the distribution is flat. Under FUSS the population
spreads out in both directions with FUSS-F in particular giving an extremely uniform distribution.

of 1000 and graphed the population distribution across the
number of clauses satisfied at the end of the run. We stopped
each run when the EA made no progress in 40 generations.
The results of this appear in Figure 11.

The first thing to note is that with TOUR4-R the population
collapses to a narrow band of fitness levels, as expected. With
TOUR4-F the distribution is now uniform, though practically
none of the population satisfies fewer than 550 clauses. The
reason for this is quite simple: While FUDS levels the pop-
ulation distribution out, TOUR4 tends to select the most fit
individuals and thus pushes the population to the right from
its starting point. In contrast, FUSS pushes the population
toward currently unoccupied fitness levels. This results in the
population spreading out in both directions and so the number
of individuals with extremely poor fitness is much higher.

Given that our goal is to find an instantiation that satisfies
all 645 clauses, it is questionable whether having a large
percentage of the population unable to satisfy even 600 clauses
is of much benefit. While the total population diversity under
FUSS-F might be very high, perhaps the kind of diversity

that matters the most is the diversity among the relatively fit
individuals in the population. This should be true for all but
the most excessively deceptive problems. By thinly spreading
the population across a very wide range of fitness levels we
actually end up with very few individuals with the kind of
diversity that matters. Of course this depends on the nature
of the problem we are trying to solve and the fitness function
that we use.

Fortunately with CNF3 SAT we can directly measure pop-
ulation diversity by taking the average hamming distance
between individuals’ genomes. While this means that the value
of the fitness based similarity metric is questionable for this
problem, as more direct methods like crowding can be applied,
it is a useful situation for our analysis as it allows us to directly
measure how effective FUSS and FUDS are at preserving
population diversity. The hope of course is that any positive
benefits that we have seen here will also carry over to problems
where directly measuring the diversity is problematic.

For the diversity tests we used a population size of 1000
again. For comparison we used FUSS, TOUR3 and TOUR12

21

590 600 610 620 630 640 650
Clauses Satisfied

0

20

40

60

80

A
ve

ra
ge

 H
am

m
in

g
D

is
ta

nc
e FUSS-R

TOUR3-R
TOUR12-R

CNF3 SAT Total Fitness Diversity

590 600 610 620 630 640 650
Clauses Satisfied

0

20

40

60

80

A
ve

ra
ge

 H
am

m
in

g
D

is
ta

nc
e

FUSS-F
TOUR3-F
TOUR12-F

CNF3 SAT Total Fitness Diversity

590 600 610 620 630 640 650
Clauses Satisfied

0

20

40

60

80

A
ve

ra
ge

 H
am

m
in

g
D

is
ta

nc
e FUSS-R

TOUR3-R
TOUR12-R

CNF3 SAT Top Fitness Diversity

590 600 610 620 630 640 650
Clauses Satisfied

0

20

40

60

80

A
ve

ra
ge

 H
am

m
in

g
D

is
ta

nc
e FUSS-F

TOUR3-F
TOUR12-F

CNF3 SAT Top Fitness Diversity

Fig. 12. While the total population diversity is very strong under FUSS, the diversity among fit individuals is weak. FUDS improves the total population
diversity compared to random deletion, but has little effect on the diversity among the fit individuals.

both with random deletion and with FUDS. In each run
we calculated two different statistics: The average hamming
distance between individuals in the whole population, and the
average hamming distance between individuals whose fitness
was no more than 20 below the fittest individual in the
population at the time. These two measurements give us the
“total population diversity” and “high fitness diversity” graphs
in Figure 12.

We graphed these measurements against the solution cost
of the fittest individual rather than the number of generations.
This is only fair because if good solutions are found very
quickly then an equally rapid decline in diversity is acceptable
and to be expected. Indeed it is trivial to come up with a
system which always maintains high population diversity how
ever long it runs, but is unlikely to find any good solutions.
The results were averaged over all 100 problems in the test set.
Because the best solution found in each run varied we have
only graphed each curve until such a point where fewer than
50% of the runs were able to achieve this level of fitness. Thus

the terminal point at the right of each curve is representative
of fairly typical runs rather than just a few exceptional ones
that perhaps found unusually good solutions by chance.

The top two graphs in Figure 12 show the total popu-
lation diversity. As expected the diversity with TOUR3-R
and TOUR12-R decline steadily as finding better solutions
becomes increasingly difficult and the population tends to
collapse into a narrow band of fitness. As we would expect,
the total population diversity with TOUR3-R is higher than
with TOUR12-R. While FUSS-R declines initially it then
stabilizes at around 50 before becoming stuck. As the TOUR3-
R and TOUR12-R curves both extend further to the right, even
though the total population diversity becomes quite low, this
show that diversity problems in the population as a whole are
not a significant factor behind the performance problems with
FUSS-R.

The top right graph shows the same selection schemes, but
this time with FUDS. As expected FUDS has significantly
improved the total population diversity with both TOUR3 and

22

TOUR12, while having little impact on FUSS which already
has a relatively flat population distribution. As the maximal
solution found by TOUR3-F and TOUR12-F were not better
than TOUR3-R and TOUR12-R, this indicates that improved
total population diversity is not a significant factor in the
performance of the EA for this type of optimization problem.
That FUDS has lifted the total diversity for TOUR3 and
TOUR12 so that they are now above FUSS-F, is particularly
interesting. This suggests that while FUSS has high total
population diversity, there appears to be some more subtle
effects that are causing the diversity to be lower than it
could be. It may be related to the fact the FUSS sometimes
heavily selects from small groups within the population during
the early stages of the optimization process, as we noted in
Section XIII. However we are not certain whether this is
occurring in this case.

On the lower set of graphs we see the diversity among the
fitter individuals in the population; specifically those whose
fitness is no more than 20 below the fittest individual in the
population at the time. On the first graph on the left we see
that TOUR3 has significantly greater diversity than TOUR12
with both deletion schemes. This is expected as TOUR3 tends
to search more evolutionary paths while TOUR12 just rushes
down a few. Disappointingly FUDS does not appear to have
made much difference to the diversity among these highly fit
individuals, though the curves do flatten out a little as the
diversity drops below 30, so perhaps FUDS is having a slight
impact.

For both FUSS-R and FUSS-F the diversity among the fit
individuals was poor, indeed it was even worse than TOUR12
for both deletion schemes. Thus, while the total population
diversity with FUSS tends to be high, the diversity among
the fittest individuals in the population can be quite poor.
Furthermore, the curves for high fitness diversity all end once
the diversity drops into the 12 to 17 range. As this pattern
was absent from the graphs of total population diversity, this
indicates that it is indeed the diversity among the relatively fit
individuals in the population that most determines when the
EA is going to become stuck.

In summary, these results show that while FUSS has been
successful in maximizing total population diversity, for prob-
lems such as CNF3 SAT this is not sufficient. It appears to be
more important that the EA maximizes the diversity among
those individuals which have higher fitness and in this regard
FUSS is poor, which leads to poor performance. This is most
likely a characteristic of optimization problems which, while
still difficult, are not as deceptive as SCP or random TSP.

XVI. CONCLUSIONS AND FUTURE RESEARCH

DIRECTIONS

We have addressed the problem of balancing the selection
intensity in EAs, which determines speed versus quality of a
solution. We invented a new fitness uniform selection scheme
FUSS. It generates a selection pressure toward sparsely pop-
ulated fitness levels. This property is unique to FUSS as
compared to other selection schemes (STD). It results in
the desired high selection pressure toward higher fitness if

there are only a few fit individuals. The selection pressure
is automatically reduced when the number of fit individuals
increases. We motivated FUSS as a scheme which bounds the
number of similar individuals in a population. We defined a
universal similarity relation solely depending on the fitness,
independent of the problem structure, representation and EA
details. We showed analytically by way of a simple example
that FUSS can be much more effective than STD. A joint
pair selection scheme for recombination has been defined. A
heuristic worst case analysis of FUSS compared to STD has
been given. For this, the fitness tree model has been defined,
which is an interesting analytic tool in itself. FUSS solves
the problem of population takeover and the resulting loss
of genetic diversity of STD, while still generating enough
selection pressure. It does not help in getting a more uniform
distribution within a fitness level.

We have also invented a related system called FUDS which
achieves a similar effect to FUSS except that it works through
deletion rather than through selection. This means that FUDS
shares many of the important characteristics of FUSS includ-
ing strong total population diversity and the impossibility of
population collapse. We showed analytically that for a simple
deceptive optimization problem the performance of STD when
used with FUDS scales similarly to FUSS.

A test system has been constructed and used to evaluate
the empirical performance of both FUSS and FUDS on
a range of optimization problems with different population
sizes, mutation probabilities and crossover probabilities. Their
performance has been compared to the more standard methods
of tournament selection and random deletion. For the artifi-
cial deceptive 2D optimization problem and random distance
matrix TSP problems both FUSS and FUDS performed ex-
tremely well. For the deceptive 2D problem they dramatically
improved the scaling exponent in the number of generations
needed to find the global optimum. For the TSP problems
FUSS-R performed as well as optimally tuned TOURx-R for
all population sizes, and FUDS caused TOURx to perform
near optimally for all tournament sizes and population sizes.

With SCP problems with small populations the perfor-
mance of FUSS-R was only better than TOURx-R when the
tournament size was poorly set. For populations larger than
1,000 however, FUSS-R continued to perform as well as the
optimal results for TOURx-R. FUDS was again consistently
superior returning better results than random deletion for
every combination of selection scheme, tournament size and
population size tested.

For CNF3 SAT problems we ran into difficulties however.
While FUDS significantly improved the performance of FUSS,
it was inferior to random deletion for low selection intensities.
In other cases the performance was comparable. FUSS how-
ever had serious performance problems. Further investigations
revealed that this appears to be due to the small number
of individuals in the population that have relatively high
fitness when using FUSS. We measured the diversity in the
population and found that while the total population diversity
with FUSS was high, the diversity among the fit individuals
was relatively poor. This produced a serious diversity problem
in the population when combined with the fact that there are

23

relatively few individuals of high fitness when using FUSS.
As the performance of TOURx-R was not impacted by high

selection intensity on the CNF3 SAT problem this indicates
that this problem does not have the kind of deceptive nature
that harshly punishes greedy exploration that we were looking
for. Perhaps for such problems a less extreme approach is
called for. For example, rather than trying to spread the
population across all fitness levels uniformly we should instead
control the distribution so that it is biased toward high fitness
but never collapses totally as it does with TOURx-R.

We have experimented with a deletion scheme which deletes
the population distribution down to a convex curve peaked at
the fittest individual in the population. This is the deletion
equivalent of the scale independent selection scheme described
in Section IX. Our results thus far indicate that the perfor-
mance is equal or slightly superior to random deletion in all
situations. However the dramatic improvements that FUDS has
over random deletion in some cases are now less significant.

Another possibility is to manipulate the fitness function
to effectively achieve the same thing. For example, we have
found that by taking the fitness to be the reciprocal of the
number of unsatisfied clauses in the CNF3 SAT problem the
performance of FUSS improves significantly, indeed it is then
comparable to TOURx. Perhaps however it would be better to
avoid these performance tricks and instead focus on extremely
deceptive problems where high selection intensity is heavily
punished, that is, the kinds of problems that FUSS and FUDS
were specifically designed for.

Acknowledgments

This work was supported by SNF grants 2100-67712.02 and
200020-107616.

REFERENCES

[1] D. E. Goldberg, Genetic Algorithms in Search, Optimization, and
Machine Learning. Reading, Mass.: Addison-Wesley, 1989.

[2] D. E. Goldberg and K. Deb, “A comparative analysis of selection
schemes used in genetic algorithms,” in Foundations of genetic algo-
rithms, G. J. E. Rawlings, Ed. San Mateo: Morgan Kaufmann, 1991,
pp. 69–93.

[3] T. Blickle and L. Thiele, “A mathematical analysis of tournament se-
lection,” in Proc. Sixth International Conference on Genetic Algorithms
(ICGA’95). San Francisco, California: Morgan Kaufmann Publishers,
1995, pp. 9–16.

[4] ——, “A comparison of selection schemes used in evolutionary algo-
rithms,” Evolutionary Computation, vol. 4, no. 4, pp. 361–394, 1997.

[5] M. Maza and B. Tidor, “An analysis of selection procedures with
particular attention paid to proportional and Boltzmann selection,” in
Proc. 5th International Conference on Genetic Algorithms. San Mateo,
CA, USA: Morgan Kaufmann, 1993, pp. 124–131. [Online]. Available:
ftp://publications.ai.mit.edu/ai-publications/1000-1499/AIM-1345.ps

[6] J. H. Holland, Adpatation in Natural and Artificial Systems. Ann Arbor,
MI: University of Michigan Press, 1975.

[7] H. Mühlenbein and D. Schlierkamp-Voosen, “The science of breeding
and its application to the breeder genetic algorithm (BGA),” Evolution-
ary Computation, vol. 1, no. 4, pp. 335–360, 1994.

[8] D. Whitley, “The GENITOR algorithm and selection pressure: Why
rank-based allocation of reproductive trials is best,” in Proc. Third
International Conference on Genetic Algorithms (ICGA’89). San
Mateo, California: Morgan Kaufmann Publishers, Inc., 1989, pp. 116–
123.

[9] J. E. Baker, “Adaptive selection methods for genetic algorithms,” in
Proc. 1st International Conference on Genetic Algorithms and their
Applications. Pittsburgh, PA: Lawrence Erlbaum Associates, 1985, pp.
101–111.

[10] A. E. Eiben, R. Hinterding, and Z. Michalewicz, “Parameter control in
evolutionary algorithms,” IEEE Transactions on Evolutionary Computa-
tion, vol. 3, no. 2, pp. 124–141, 1999.

[11] L. J. Eshelman, “The CHC adaptive search algorithm: How to safe search
when engaging in nontraditional genetic recombination,” in Foundations
of genetic algorithms, G. J. E. Rawlings, Ed. San Mateo: Morgan
Kaufmann, 1991, pp. 265–283.

[12] T. Bäck, F. Hoffmeister, and H. P. Schwefel, “A survey of evolution
strategies,” in Proc. 4th International Conference on Genetic Algorithms.
San Diego, CA: Morgan Kaufmann, July 1991, pp. 2–9.

[13] M. Herdy, “Reproductive isolation as strategy parameter in hierarchically
organized evolution strategies,” in Parallel problem solving from nature
2. Amsterdam: North-Holland, 1992, pp. 207–217.

[14] D. Schlierkamp-Voosen and H. Mühlenbein, “Strategy adaptation by
competing subpopulations,” in Parallel Problem Solving from Nature
– PPSN III. Berlin: Springer, 1994, pp. 199–208, Lecture Notes in
Computer Science 866.

[15] D. E. Goldberg and J. Richardson, “Genetic algorithms with sharing
for multi-modal function optimization,” in Proc. 2nd International
Conference on Genetic Algorithms and their Applications. Cambridge,
MA: Lawrence Erlbaum Associates, July 1987, pp. 41–49.

[16] K. Jong, “An analysis of the behavior of a class of genetic adaptive
systems,” Dissertation Abstracts International, vol. 36, no. 10, 5140B,
1975.

[17] R. J. Collins and D. R. Jefferson, “Selection in massively parallel
genetic algorithms,” in Proc. Fourth International Conference on Genetic
Algorithms. San Mateo, CA: Morgan Kaufmann Publishers, 1991.

[18] G. Rudolph, “On takeover times in spatially structured populations: array
and ring,” in Proceedings of the Second Asia-Pacific Conference on
Genetic Algorithms and Applications (APGA ’00), K. K. Lai, O. Katai,
M. Gen, and B. Lin, Eds. Hong Kong, PR China: Global-Link
Publishing Company, 2000, pp. 144–151.

[19] D. J. Cavicchio, “Adaptive search using simulated evolution,” Ph.D.
dissertation, Unpublished doctoral dissertation, University of Michigan,
Ann Arbor, 1970.

[20] M. Hutter, “Fitness uniform selection to preserve genetic diversity,”
in Proc. 2002 Congress on Evolutionary Computation (CEC-2002).
Washington D.C, USA: IEEE, May 2002, pp. 783–788. [Online].
Available: http://arxiv.org/abs/cs.AI/0103015

[21] S. Legg, M. Hutter, and A. Kumar, “Tournament versus fitness uniform
selection,” in Proceeding of the 2004 Congress on Evolutionary Com-
putation, 2004.

[22] S. Legg and M. Hutter, “Fitness uniform deletion: A simple way to
preserve diversity,” in GECCO 2005: Proceedings of the Genetic and
Evolutionary Computation Conference, 2005.

[23] A. Rogers and A. Prügel-Bennett, “Genetic drift in genetic algorithm
selection schemes,” IEEE Transactions on Evolutionary Computation,
vol. 3, no. 4, pp. 298–303, 1999.

[24] S. Legg, “Website,” www.idsia.ch/∼shane, 2004.
[25] M. Hutter, “Implementierung eines Klassifizierungs-Systems,” Master’s

thesis, Theoretische Informatik, TU München, 1991, 72 pages with C
listing, in German, http://www.idsia.ch/∼marcus/ai/pcfs.htm. [Online].
Available: http://www.idsia.ch/ marcus/ai/pcfs.htm

[26] A. Rogers and A. Prügel-Bennett, “Modelling the dynamics of a
steady-state genetic algorithm,” in Foundations of Genetic Algorithms
5, W. Banzhaf and C. Reeves, Eds. San Francisco, CA: Morgan
Kaufmann, 1999, pp. 57–68.

[27] S. Forrest and M. Mitchell, “What makes a problem hard for a genetic
algorithm? Some anomalous results and their explanation,” Machine
Learning, vol. 13, no. 2–3, pp. 285–319, 1993.

[28] S. Lin and B. W. Kernighan, “An effective heuristic for the travelling
salesman problem,” Operations Research, vol. 21, pp. 498–516, 1973.

[29] O. Martin and S. Otto, “Combining simulated annealing with local
search heuristics,” Annals of Operations Research, vol. 63, pp. 57–75,
1996.

[30] D. S. Johnson and A. McGeoch, “The traveling salesman problem: A
case study,” in Local Search in Combinatorial Optimization, ser. Discrete
Mathematics and Optimization, E. H. L. Aarts and J. K. Lenstra, Eds.
Chichester, England: Wiley-Interscience, 1997, ch. 8, pp. 215–310.

[31] D. Applegate, W. Cook, and A. Rohe, “Chained Lin-
Kernighan for large traveling salesman problems,” Department
of Computational and Applied Mathematics, Rice Univer-
sity, Houston, TX, Tech. Rep., 2000. [Online]. Available:
http://www.isye.gatech.edu/∼wcook/papers/chained lk.ps

[32] D. Goldberg and R. L. Alleles, “Loci and the traveling salesman
problem,” in Proc. International Conference on Genetic Algorithms and
their Applications. Lawrence Erlbaum Associates, 1985, pp. 154–159.

24

[33] J. Beasley and P. Chu, “A genetic algorithm for the set covering
problem,” European Journal of Operational Research, vol. 94, pp. 392–
404, 1996.

[34] J. Beasley, “Or-library,” mscmga.ms.ic.ac.uk/jeb/orlib/scpinfo.html,
2003.

[35] P. Crescenzi and V. Kann, “A compendium of NP optimization prob-
lems,” www.nada.kth.se/∼viggo/problemlist/compendium.html, 2003.

[36] H. H. Hoos and T. Stützle, “SATLIB: An Online Resource for Research
on SAT,” in SAT 2000. IOS press, 2000, pp. 283–292.

